BZOJ 2115: [Wc2011] Xor

2115: [Wc2011] Xor

Time Limit: 10 Sec  Memory Limit: 259 MB

Submit: 2794  Solved: 1184
[Submit][Status][Discuss]

Description

BZOJ 2115: [Wc2011] Xor

Input

第一行包含两个整数N和 M,
表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。
图中可能有重边或自环。

Output

仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。

Sample Input

5 7
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2

Sample Output

6

HINT

 

BZOJ 2115: [Wc2011] Xor

 

Source

【题解】:

  这道题要求从1到n的最大xor和路径,存在重边,允许经过重复点、重复边。那么 在图上作图尝试之后就会发现,路径一定是由许多的环和一条从1到n的路径组成。容易发现,来回走是没有任何意义的,因为来回走意味着抵消。考虑这道题求得是路径xor和最大,所以必然我们要想办法处理环的情况。我的做法是任意地先找出一条从1到n的路径,把这条路径上的xor和作为ans初值(先不管为什么可行),然后我们的任务就变成了求若干个环与这个ans初值所能组合成的xor最大值。显然,我们需要预处理出图上所有的环,并处理出所有环的环上xor值,这当然是dfs寻找,到n的路径的时候顺便求一下就可以了。

  当我们得到了若干个环的xor值之后,因为是要求xor最大值,我们就可以构出这所有xor值的线性基。构出之后,再用ans在线性基上取max就可以了。

  现在我们来讨论上述做法的可行性。

   第一种情况:我们对最终答案产生贡献的某个环离1到n的主路径很远,这样的话,因为至少可以保证1可以到达这个环,那么我们可以走到这个环之后绕环一周之后原路返回,这样从1走到环的路上这一段被重复经过所以无效,但是环上的xor值被我们得到了,所以我们并不关心这个环和主路径的关系,我们只关心环的权值。

  第二种情况:我们任意选取的到n的路径是否能保证最优性。假设存在一条更优的路径从1到n,那么这条路径与我们原来的路径构成了一个环,也就会被纳入线性基中,也会被计算贡献,假如这个环会被经过,那么最后的情况相当于是走了两遍原来选取的路径,抵消之后走了一次这个最优路径,所以我们无论选取的是哪条路径作为ans初值,都可以通过与更优情况构成环,然后得到一样的结果。这一证明可以拓展到路径上的任意点的路径选取。

  这样我们就可以完美解决了。我第一次WA了一发,因为我没有考虑到ans初值不为0,在线性基上取到xor的max的时候,不能单纯以ans这一位是否为0来决定是否异或上基的这一位,必须要看异或之后取一个max做一个判断才行。

题解转自:http://www.cnblogs.com/ljh2000-jump/p/5869991.html

【代码】:

#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
ll read(){
ll x=;char ch=getchar();
while(ch<''||ch>'') ch=getchar();
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x;
}
const int N=5e4+;
struct node{
int v,next;
ll w;
}e[N<<];
int n,m,head[N],tot,cir,cnt;
ll bin[],dis[N],w[N*];
bool vis[N];
void add(int x,int y,ll z){
e[++tot].v=y;e[tot].w=z;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].w=z;e[tot].next=head[y];head[y]=tot;
}
void dfs(int x){
vis[x]=;
for(int i=head[x];i;i=e[i].next){
int v=e[i].v;
if(!vis[v]){
dis[v]=dis[x]^e[i].w;
dfs(v);
}
else w[++cir]=dis[v]^dis[x]^e[i].w;
}
}
void Gauss(){
for(ll i=bin[];i;i>>=){
int j=cnt+;
for(;j<=cir&&!(w[j]&i);j++);
if(j==cir+) continue;
cnt++;
swap(w[cnt],w[j]);
for(int k=;k<=cir;k++){
if(k!=cnt&&(w[k]&i)){
w[k]^=w[cnt];
}
}
}
}
int main(){
bin[]=;for(int i=;i<=;i++) bin[i]=bin[i-]<<;
n=read();m=read();
for(int i=;i<=m;i++){
int u=read(),v=read();
ll w=read();
add(u,v,w);
}
dfs();Gauss();
ll ans=dis[n];
for(int i=;i<=cnt;i++) ans=max(ans,ans^w[i]);
printf("%lld",ans);
return ;
}

 

 

 

 

上一篇:SOL面向对象 五大原则


下一篇:js中如何将数据获得2位小数以及对数据进行千分位划分