BZOJ 2115 【Wc2011】 Xor

Description

BZOJ 2115 【Wc2011】  Xor

Input

第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。

Output

仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。

BZOJ 2115 【Wc2011】  Xor

  这道题好像是很久以前学线性基的时候留下的……现在来填个坑……

  首先,由于异或有一个很好的性质,就是两个相同的数异或起来等于零。所以,一条边重复走两遍不会对答案产生贡献。这启示我们可以从一个点$u$走到点$v$,在$v$所在的一个环上走一圈,再走回到$u$,就可以得到$v$所在环的异或和。这样的话,我们就可以随意抠一条$1$到$n$的路径出来,假如异或和为$ans$,问题就转化这样了:有一个数$ans$和一些数(这些数就是每个环的异或和),可以选择是否异或上每个数,求$ans$的最大值。

  然后,我们要找出所有的环显然不现实。但是,我们可以发现所有环的异或和可以由一些环来得到。所以,在$dfs$的时候,一条非树边所连接的两个点加上这条非树边构成了一个环,我们把这种环全部找出来,所有环的异或和就都可以由这些环的异或和异或得到。所以,我们对这些异或和建立一个线性基,最后更新一下$ans$就可以了。

  下面贴代码(其实只有一遍$dfs$和一个线性基):

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 50010
#define maxm 200010 using namespace std;
typedef long long llg; int n,m,head[maxn],next[maxm],to[maxm],tt;
llg c[maxm],dis[maxn],p[64],ans;
bool vis[maxn]; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} void link(int x,int y){
to[++tt]=y;next[tt]=head[x];head[x]=tt;
to[++tt]=x;next[tt]=head[y];head[y]=tt;
scanf("%lld",&c[tt]); c[tt-1]=c[tt];
} void push(llg x){
for(int i=62;i>=0;i--)
if(x&(1LL<<i))
if(p[i]) x^=p[i];
else{p[i]=x;break;}
} void dfs(int u,int fa){
vis[u]=1;
for(int i=head[u],v;v=to[i],i;i=next[i])
if(v!=fa)
if(!vis[v]) dis[v]=dis[u]^c[i],dfs(v,u);
else push(dis[u]^dis[v]^c[i]);
} int main(){
File("a");
n=getint(); m=getint();
while(m--) link(getint(),getint());
dfs(1,0); ans=dis[n];
for(int i=62;i>=0;i--)
if((ans^p[i])>ans) ans^=p[i];
printf("%lld",ans);
return 0;
}
上一篇:JavaIO流(02)RandomAccessFile类详解


下一篇:ACM学习历程—BZOJ 2115 Xor(dfs && 独立回路 && xor高斯消元)