洛谷P2015 二叉苹果树(树状dp)

题目描述

有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)

这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。

我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树

2   5
\ /
3 4
\ /
1

现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。

输入输出格式

输入格式:

第1行2个数,N和Q(1<=Q<= N,1<N<=100)。

N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。

每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。

每根树枝上的苹果不超过30000个。

输出格式:

一个数,最多能留住的苹果的数量。

输入输出样例

输入样例:
5 2
1 3 1
1 4 10
2 3 20
3 5 20
输出样例:
21

对于树状dp,就是在树上面做动态规划。关键点是树的层次性,而层次性又是有递归的建树而实现的。要注意这题是有根树,根节点给定是1,而且必须保留!
题解写到注释里面了
代码如下:
 #include <bits/stdc++.h>

 using namespace std;
#define inf 0x3f3f3f3f
#define M 5000
int next[M],pre[M],last[M],apple[M],dp[M][M],n,m,tot=;
/*
dp[i][j]表示节点i保留j个枝条的所剩苹果最大值
apple[i]表示第i条边上的苹果数
next,pre,last是用来建边的数组
tot来统计边的序号
*/
void cnct (int u,int v,int w)
{
tot++;
next[tot]=v;
pre[tot]=last[u];
last[u]=tot;
apple[tot]=w;
}
int dfs (int u,int father)
{
int ans=;//ans表示u节点的子节点数目
for (int i=last[u];i!=;i=pre[i])
{
int v=next[i],value=apple[i];
if(v == father)continue;//如果下一个相邻节点就是父节点,则证明到底层了,开始递归父节点的兄弟节点
ans+=dfs(v,u)+;//递归到最上层的根节点1
for(int j=min(ans,m);j>=;--j)//因为有限制枝条的数目,取个min
{
for(int k=min(j,ans);k>=;--k)
dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[v][k-]+value);
/*
对于u节点下的子节点j,对j保留多少枝条最优进行dp
在这里好好说明下,因为建树是我们是按照递归建的树。
进行比较时,dp[u][j]都是前面选择除i外的子节点得到的最优解结果
所以dp的时候不可能重复或者漏掉某节点
*/
}
}
return ans;
}
int main()
{
//freopen("de.txt","r",stdin);
memset(last,,sizeof last);
memset(next,,sizeof next);
memset(pre,,sizeof pre);
memset(dp,,sizeof dp);
scanf("%d%d",&n,&m);
for(int i=;i<n;++i)
{
int x,y,value;
scanf("%d%d%d",&x,&y,&value);
cnct(x,y,value);
cnct(y,x,value);
}
dfs(,);
printf("%d\n",dp[][m]);
return ;
}

上一篇:树状DP HDU1520 Anniversary party


下一篇:puer工具的使用