A:首先将p和q约分。容易发现相当于要求存在k满足bk mod q=0,也即b包含q的所有质因子。当然不能直接分解质因数,考虑每次给q除掉gcd(b,q),若能将q除至1则说明合法。但这个辣鸡题卡常,每求一次gcd都除干净就可以了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
ll gcd(ll n,ll m){return m==0?n:gcd(m,n%m);}
ll read()
{
ll x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n;
ll p,q,b;
signed main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
n=read();
while (n--)
{
p=read(),q=read(),b=read();
q/=gcd(p,q);
ll u=gcd(b,q);
while (u>1&&q>1)
{
while (q%u==0) q/=u;
u=gcd(b,q);
}
if (q==1) puts("Finite");else puts("Infinite");
}
return 0;
//NOTICE LONG LONG!!!!!
}
B:先考虑求出每个区间的f值。可以发现若区间长度为x,对于区间内第i个元素,其对最后答案是否产生贡献仅与C(x,i)是否为奇数有关。直接计算仍然是O(n3)的,由于C(i,j)=C(i-1,j-1)+C(i-1,j),f值我们也可以类似地递推得到,即f[i][j]=f[i+1][j]^f[i][j-1],考虑其中每个元素被计算的次数容易证明。然后再预处理正方形最大值,同样递推一下即可。于是就O(1)回答询问了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 5010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
ll gcd(ll n,ll m){return m==0?n:gcd(m,n%m);}
ll read()
{
ll x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,q,a[N],f[N][N],ans[N][N];
signed main()
{
#ifndef ONLINE_JUDGE
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
#endif
n=read();
for (int i=1;i<=n;i++) a[i]=read();
for (int i=1;i<=n;i++) ans[i][i]=f[i][i]=a[i];
for (int i=2;i<=n;i++)
for (int j=1;j<=n-i+1;j++)
f[j][j+i-1]=f[j][j+i-2]^f[j+1][j+i-1];
for (int i=2;i<=n;i++)
for (int j=1;j<=n-i+1;j++)
ans[j][j+i-1]=max(max(ans[j][j+i-2],ans[j+1][j+i-1]),f[j][j+i-1]);
q=read();
for (int i=1;i<=q;i++)
{
int l=read(),r=read();
printf("%d\n",ans[l][r]);
}
return 0;
//NOTICE LONG LONG!!!!!
}
C:f[i][j][k]表示当前已经i个人进入过电梯,电梯在第j层,电梯内的人要到达的楼层状态为k,连边bfs即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<map>
using namespace std;
#define ll long long
#define N 10000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
map<int,int> id;
int n,a[2010],b[2010],cnt;
bitset<2010> f[10000][10];
struct data{int d,cur,S,nxt,s;
}q[N];
void check(int &k)
{
if (id.find(q[k].S)==id.end()) id[q[k].S]=++cnt;
if (f[id[q[k].S]][q[k].cur][q[k].nxt]) {k--;return;}
f[id[q[k].S]][q[k].cur][q[k].nxt]=1;
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
#endif
n=read();
for (int i=1;i<=n;i++) a[i]=read(),b[i]=read();
int head=0,tail=1;
q[1].d=0;q[1].cur=1;q[1].S=0;q[1].nxt=1;q[1].s=0;check(tail);
do
{
data x=q[++head];if (x.S==0&&x.nxt>n) {cout<<x.d;return 0;}x.d++;
if (x.cur>1) q[++tail]=x,q[tail].cur--,check(tail);
if (x.cur<9) q[++tail]=x,q[tail].cur++,check(tail);
int u=(x.S>>3*x.cur-3)&7;
if (u) q[++tail]=x,q[tail].S=x.S^(u<<3*x.cur-3)^(u-1<<3*x.cur-3),q[tail].s--,check(tail);
if (x.s<4&&a[x.nxt]==x.cur) u=(x.S>>3*b[x.nxt]-3)&7,q[++tail]=x,q[tail].S=x.S^(u<<3*b[x.nxt]-3)^(u+1<<3*b[x.nxt]-3),q[tail].s++,q[tail].nxt++,check(tail);
}while (head<tail);
return 0;
//NOTICE LONG LONG!!!!!
}
E:显然每次贪心的选择能坐的尽量久的公交车即可。考虑倍增,对每个点预处理向上坐2k辆公交车能到的最高点。初始值通过子树查询得到。然后只需要考虑是否能通过某辆公交车跨越lca,这是一个矩形区域查询。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define N 200010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,fa[N][20],p[N],t,dfn[N],size[N],root[N],deep[N],reach[N][20],cnt,tot;
vector<int> a[N];
struct data{int to,nxt;
}edge[N<<1];
struct data2{int l,r,x;
}tree[N<<6];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
dfn[k]=++cnt;size[k]=1;
for (int i=p[k];i;i=edge[i].nxt)
{
deep[edge[i].to]=deep[k]+1;
dfs(edge[i].to);
size[k]+=size[edge[i].to];
}
}
int lca(int x,int y)
{
if (deep[x]<deep[y]) swap(x,y);
for (int j=19;~j;j--) if (deep[fa[x][j]]>=deep[y]) x=fa[x][j];
if (x==y) return x;
for (int j=19;~j;j--) if (fa[x][j]!=fa[y][j]) x=fa[x][j],y=fa[y][j];
return fa[x][0];
}
void ins(int &k,int l,int r,int x)
{
tree[++tot]=tree[k];k=tot;tree[k].x++;
if (l==r) return;
int mid=l+r>>1;
if (x<=mid) ins(tree[k].l,l,mid,x);
else ins(tree[k].r,mid+1,r,x);
}
void dfs2(int k)
{
cnt++;root[cnt]=root[cnt-1];
for (int i=0;i<a[k].size();i++) ins(root[cnt],1,n,dfn[a[k][i]]);
for (int i=p[k];i;i=edge[i].nxt)
{
dfs2(edge[i].to);
if (deep[reach[edge[i].to][0]]<deep[reach[k][0]]) reach[k][0]=reach[edge[i].to][0];
}
}
int query(int x,int y,int l,int r,int p,int q)
{
if (!y) return 0;
if (l==p&&r==q) return tree[y].x-tree[x].x;
int mid=l+r>>1;
if (q<=mid) return query(tree[x].l,tree[y].l,l,mid,p,q);
else if (p>mid) return query(tree[x].r,tree[y].r,mid+1,r,p,q);
else return query(tree[x].l,tree[y].l,l,mid,p,mid)+query(tree[x].r,tree[y].r,mid+1,r,mid+1,q);
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("e.in","r",stdin);
freopen("e.out","w",stdout);
#endif
n=read();
for (int i=2;i<=n;i++)
{
fa[i][0]=read();
addedge(fa[i][0],i);
}
fa[1][0]=1;dfs(1);
for (int j=1;j<20;j++)
for (int i=1;i<=n;i++)
fa[i][j]=fa[fa[i][j-1]][j-1];
m=read();
for (int i=1;i<=n;i++) reach[i][0]=i;
for (int i=1;i<=m;i++)
{
int from=read(),to=read(),key=lca(from,to);
if (deep[key]<deep[reach[from][0]]) reach[from][0]=key;
if (deep[key]<deep[reach[to][0]]) reach[to][0]=key;
a[from].push_back(to),a[to].push_back(from);
}
cnt=0;dfs2(1);
for (int j=1;j<20;j++)
for (int i=1;i<=n;i++)
reach[i][j]=reach[reach[i][j-1]][j-1];
int q=read();
while (q--)
{
int x=read(),y=read(),key=lca(x,y),ans=0;if (deep[x]<deep[y]) swap(x,y);
for (int j=19;~j;j--) if (deep[reach[x][j]]>deep[key]) ans+=1<<j,x=reach[x][j];
for (int j=19;~j;j--) if (deep[reach[y][j]]>deep[key]) ans+=1<<j,y=reach[y][j];
if (deep[reach[x][0]]>deep[key]||deep[reach[y][0]]>deep[key]) {printf("-1\n");continue;}
if (key==y||query(root[dfn[x]-1],root[dfn[x]+size[x]-1],1,n,dfn[y],dfn[y]+size[y]-1)) printf("%d\n",ans+1);
else printf("%d\n",ans+2);
}
return 0;
//NOTICE LONG LONG!!!!!
}
D好像没看懂题解,自闭了。