视觉十四讲:BA优化_g2o

1.投影模型和BA代价函数

视觉十四讲:BA优化_g2o
这个流程就是观测方程
之前抽象的记为: \(z = h(x, y)\)
现在给出具体的参数话过程,x指此时相机的位姿R,t,它对应的李代数为\(\xi\)。路标y即为这里的三维点p,而观测数据则是像素坐标(u,v)。
此次观测的误差为: \(e = z - h(\xi, p)\)
如果把其他时刻的观测量也考虑进来,则整体的代价函数为:
视觉十四讲:BA优化_g2o
相当于对位姿和3D路标点同时进行优化,也就是所谓的BA。

2.BA的求解

在BA的目标函数上,把自变量定义成所有待优化的变量:
\(x = [\xi_{1}, ..., \xi_{m}, p_{1}, ..., p_{n}]^{T}\)
相应的,增量方程中的\(\Delta x\)则是对整体自变量的增量,在这个意义下,当给一个增量时,目标函数为:
视觉十四讲:BA优化_g2o
其中F表示整个代价函数在当前状态下对相机姿态的偏导数,而E代表该函数对路标点位置的偏导。
无论是使用G-N还是L-M方法,最后都将面对增量线性方程: \(H\Delta x = g\)
主要区别是H取 \(J^{T}J\)还是取 \(J^{T}J + \lambda I\)的形式。
以G-N为例,H矩阵为:
视觉十四讲:BA优化_g2o

3.H矩阵的稀疏性

H的稀疏性是有雅可比矩阵J引起的。考虑其中一个e,这个误差项只描述了在\(\xi_{i}\)看到\(p_{j}\)这件事,只涉及到第i个相机位姿和第j个路标点,其余都是0
故:视觉十四讲:BA优化_g2o

假设一个场景有2个相机位姿(C1,C2)和6个路标点(P1,P2,P3,P4,P5,P6)观测过程为:

视觉十四讲:BA优化_g2o

J为:视觉十四讲:BA优化_g2o

视觉十四讲:BA优化_g2o

由上面的结构,我们把H分为4个矩阵块B,E,C:
视觉十四讲:BA优化_g2o

于是,对应的线性方程组也可以变为如下形式:
视觉十四讲:BA优化_g2o

4.G2O实践

1.开始前,先讲一下BAL数据集的数据格式
视觉十四讲:BA优化_g2o
第一行表示有16个相机,22106个3D路标点 83718个观测点
视觉十四讲:BA优化_g2o
第一列是代表第几个相机,第二列代表第几个路标点,后面是观测到的像素坐标。
该组数据一共是83718行。

视觉十四讲:BA优化_g2o
后面的数据是16个相机的参数,9维,分别是-R(3维),t(3维),f(焦距),k1,k2畸变参数
一共16组数据。
再后面的数据,就是22106个路标点的3D坐标(3维)

2.bundle_adjustment_g2o.cpp

#include <g2o/core/base_vertex.h>
#include <g2o/core/base_binary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/csparse/linear_solver_csparse.h>
#include <g2o/core/robust_kernel_impl.h>
#include <iostream>

#include "common.h"
#include "sophus/se3.hpp"

using namespace Sophus;
using namespace Eigen;
using namespace std;

/// 姿态和内参的结构
struct PoseAndIntrinsics {
    PoseAndIntrinsics() {}

    /// set from given data address
    explicit PoseAndIntrinsics(double *data_addr) {
        rotation = SO3d::exp(Vector3d(data_addr[0], data_addr[1], data_addr[2]));
        translation = Vector3d(data_addr[3], data_addr[4], data_addr[5]);
        focal = data_addr[6];
        k1 = data_addr[7];
        k2 = data_addr[8];
    }

    /// 将估计值放入内存
    void set_to(double *data_addr) {
        auto r = rotation.log();
        for (int i = 0; i < 3; ++i) data_addr[i] = r[i];
        for (int i = 0; i < 3; ++i) data_addr[i + 3] = translation[i];
        data_addr[6] = focal;
        data_addr[7] = k1;
        data_addr[8] = k2;
    }

    SO3d rotation;
    Vector3d translation = Vector3d::Zero();
    double focal = 0;
    double k1 = 0, k2 = 0;
};



/// 位姿加相机内参的顶点,9维,前三维为so3,接下去为t, f, k1, k2
class VertexPoseAndIntrinsics : public g2o::BaseVertex<9, PoseAndIntrinsics> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    VertexPoseAndIntrinsics() {}

    virtual void setToOriginImpl() override {
        _estimate = PoseAndIntrinsics();
    }

	//更新估计值
    virtual void oplusImpl(const double *update) override {
        _estimate.rotation = SO3d::exp(Vector3d(update[0], update[1], update[2])) * _estimate.rotation;
        _estimate.translation += Vector3d(update[3], update[4], update[5]);
        _estimate.focal += update[6];
        _estimate.k1 += update[7];
        _estimate.k2 += update[8];
    }

    /// 根据估计值投影一个点,
    Vector2d project(const Vector3d &point) {
		//把一个世界的3D点变换到当前相机点
        Vector3d pc = _estimate.rotation * point + _estimate.translation;
        pc = -pc / pc[2];  //投影到前方的距离1的相机平面
        double r2 = pc.squaredNorm();  //r2
		//去畸变 1 + k1*r2 + k2*r2*r2  
        double distortion = 1.0 + r2 * (_estimate.k1 + _estimate.k2 * r2);
		//得到投影的像素坐标
        return Vector2d(_estimate.focal * distortion * pc[0],
                        _estimate.focal * distortion * pc[1]);
    }

    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}
};

//路标3D点的顶点
class VertexPoint : public g2o::BaseVertex<3, Vector3d> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    VertexPoint() {}

    virtual void setToOriginImpl() override {
        _estimate = Vector3d(0, 0, 0);
    }

	//更新估计值
    virtual void oplusImpl(const double *update) override {
        _estimate += Vector3d(update[0], update[1], update[2]);
    }

    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}
};


//误差模型  观测维度2,类型为2d,   连接2个顶点类型
class EdgeProjection :
    public g2o::BaseBinaryEdge<2, Vector2d, VertexPoseAndIntrinsics, VertexPoint> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

	//计算模型误差 ,投影-观测
    virtual void computeError() override {
        auto v0 = (VertexPoseAndIntrinsics *) _vertices[0];  //位姿
        auto v1 = (VertexPoint *) _vertices[1]; //路标
        auto proj = v0->project(v1->estimate());//观测路标投影一个像素点
        _error = proj - _measurement;   //误差
    }

    // use numeric derivatives
    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}

};

void SolveBA(BALProblem &bal_problem);

int main(int argc, char **argv) {

    if (argc != 2) {
        cout << "usage: bundle_adjustment_g2o bal_data.txt" << endl;
        return 1;
    }

    BALProblem bal_problem(argv[1]);  //读取BAL数据集
    bal_problem.Normalize();  //对相机参数和路标点3D数据进行处理
    bal_problem.Perturb(0.1, 0.5, 0.5); //给路标3D点添加噪声
    bal_problem.WriteToPLYFile("initial.ply"); //生成噪声ply文件
    SolveBA(bal_problem);  //BA优化
    bal_problem.WriteToPLYFile("final.ply"); //生成优化后的ply文件

    return 0;
}




void SolveBA(BALProblem &bal_problem) {
    const int point_block_size = bal_problem.point_block_size();
    const int camera_block_size = bal_problem.camera_block_size();
    double *points = bal_problem.mutable_points(); //3D点
    double *cameras = bal_problem.mutable_cameras();//相机

    // pose dimension 9, landmark is 3
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<9, 3>> BlockSolverType;
    typedef g2o::LinearSolverCSparse<BlockSolverType::PoseMatrixType> LinearSolverType; //线性求解器
    // use LM
    auto solver = new g2o::OptimizationAlgorithmLevenberg(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
    g2o::SparseOptimizer optimizer;  //图模型
    optimizer.setAlgorithm(solver);  //设置求解器
    optimizer.setVerbose(true);   //打开调试输出

    /// build g2o problem
    const double *observations = bal_problem.observations();  //获取观测数据
    // vertex
    vector<VertexPoseAndIntrinsics *> vertex_pose_intrinsics;
    vector<VertexPoint *> vertex_points;
    for (int i = 0; i < bal_problem.num_cameras(); ++i) {  //16个相机位姿
        VertexPoseAndIntrinsics *v = new VertexPoseAndIntrinsics();   
        double *camera = cameras + camera_block_size * i;
        v->setId(i);   //顶点设置ID,
        v->setEstimate(PoseAndIntrinsics(camera));  //往图里增加顶点位姿,相机的位姿数据9维
        optimizer.addVertex(v);
        vertex_pose_intrinsics.push_back(v);
    }
    for (int i = 0; i < bal_problem.num_points(); ++i) {  //22106个路标点
        VertexPoint *v = new VertexPoint();    
        double *point = points + point_block_size * i;
        v->setId(i + bal_problem.num_cameras());  //设置ID,不能和上面重复,直接往后排
        v->setEstimate(Vector3d(point[0], point[1], point[2]));    //路标点  3维
        // g2o在BA中需要手动设置待Marg的顶点
        v->setMarginalized(true);  //路标要被边缘化计算,所以设置边缘化属性为true
        optimizer.addVertex(v);
        vertex_points.push_back(v);
    }

    // edge
    for (int i = 0; i < bal_problem.num_observations(); ++i) {   //增加边,总共83718个观测数据
        EdgeProjection *edge = new EdgeProjection;
        edge->setVertex(0, vertex_pose_intrinsics[bal_problem.camera_index()[i]]);  //设置链接的顶点,取出标号,对应数据
        edge->setVertex(1, vertex_points[bal_problem.point_index()[i]]);   //设置链接的顶点  
        edge->setMeasurement(Vector2d(observations[2 * i + 0], observations[2 * i + 1])); //观测数据
        edge->setInformation(Matrix2d::Identity());  //信息矩阵:协方差矩阵之逆
        edge->setRobustKernel(new g2o::RobustKernelHuber());
        optimizer.addEdge(edge);
    }

    optimizer.initializeOptimization();
    optimizer.optimize(40);   //迭代40次

    // set to bal problem
    for (int i = 0; i < bal_problem.num_cameras(); ++i) {
        double *camera = cameras + camera_block_size * i;
        auto vertex = vertex_pose_intrinsics[i];
        auto estimate = vertex->estimate();  //获取位姿的最优值9维  
        estimate.set_to(camera);   
    }
    for (int i = 0; i < bal_problem.num_points(); ++i) {
        double *point = points + point_block_size * i;
        auto vertex = vertex_points[i];     //获取3D路标的最优值3维
        for (int k = 0; k < 3; ++k) point[k] = vertex->estimate()[k];  //路标覆盖保存
    }
}

3.common.cpp

#include <cstdio>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <Eigen/Core>
#include <Eigen/Dense>

#include "common.h"
#include "rotation.h"
#include "random.h"

typedef Eigen::Map<Eigen::VectorXd> VectorRef;
typedef Eigen::Map<const Eigen::VectorXd> ConstVectorRef;

//这个函数从fptr文件中读出一个format类型的值,赋值给参数value,从开头开始,找到一个合适的就停止。
//这个函数主要是给BALProblem()构造函数读取txt数据文件用的,比较简陋
template<typename T>
void FscanfOrDie(FILE *fptr, const char *format, T *value) {
    int num_scanned = fscanf(fptr, format, value);
    if (num_scanned != 1)
        std::cerr << "Invalid UW data file. ";
}

//给一个三维向量加入噪声,很简单xyz依次加入随机值就好了。定义这个的目的是为了后面的Perturb()函数在增加噪声时,
// 是分开对路标点,相机的旋转,相机的平移分别加入噪声的,并且这三个量都是三维的,所以定义一个三维向量添加噪声的函数
void PerturbPoint3(const double sigma, double *point) {
    for (int i = 0; i < 3; ++i)
        point[i] += RandNormal() * sigma;
}

double Median(std::vector<double> *data) {
    int n = data->size();
    std::vector<double>::iterator mid_point = data->begin() + n / 2;
    std::nth_element(data->begin(), mid_point, data->end());
    return *mid_point;
}

BALProblem::BALProblem(const std::string &filename, bool use_quaternions) {
    FILE *fptr = fopen(filename.c_str(), "r");

    if (fptr == NULL) {
        std::cerr << "Error: unable to open file " << filename;
        return;
    };

    // This wil die horribly on invalid files. Them's the breaks.
    FscanfOrDie(fptr, "%d", &num_cameras_);  //读取总的相机数
    FscanfOrDie(fptr, "%d", &num_points_);   //读取总的路标数
    FscanfOrDie(fptr, "%d", &num_observations_);//读取总的观测数据个数

    std::cout << "Header: " << num_cameras_
              << " " << num_points_
              << " " << num_observations_;

    point_index_ = new int[num_observations_];  //取出3D路标点的标号
    camera_index_ = new int[num_observations_]; //相机的标号
    observations_ = new double[2 * num_observations_]; //观测的像素点

    num_parameters_ = 9 * num_cameras_ + 3 * num_points_;//每个相机9个参数,每个路标3个参数 
    parameters_ = new double[num_parameters_];  //参数的总大小

    for (int i = 0; i < num_observations_; ++i) {  //拷贝数据
        FscanfOrDie(fptr, "%d", camera_index_ + i);  //第几个相机
        FscanfOrDie(fptr, "%d", point_index_ + i);   //第几个路标
        for (int j = 0; j < 2; ++j) {
            FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j);//观测到的像素坐标
        }
    }

	//每个相机是一组9个参数,-R:3维(罗德里格斯向量)  t:3维  f,k1,k2。后面是3D路标的数据3维
    for (int i = 0; i < num_parameters_; ++i) {   
        FscanfOrDie(fptr, "%lf", parameters_ + i);
    }

    fclose(fptr);

    use_quaternions_ = use_quaternions;
    if (use_quaternions) {
        // Switch the angle-axis rotations to quaternions.
        num_parameters_ = 10 * num_cameras_ + 3 * num_points_;
        double *quaternion_parameters = new double[num_parameters_];//指针指向一个新的四元数数组
        double *original_cursor = parameters_;   //指针指向原始数据参数数组
        double *quaternion_cursor = quaternion_parameters;//指针指向指向四元数数组的指针
        for (int i = 0; i < num_cameras_; ++i) {
            AngleAxisToQuaternion(original_cursor, quaternion_cursor); //R转换为四元数 
            quaternion_cursor += 4;  
            original_cursor += 3;  
            for (int j = 4; j < 10; ++j) {
                *quaternion_cursor++ = *original_cursor++; 
            }
        }
        // Copy the rest of the points.
        for (int i = 0; i < 3 * num_points_; ++i) {
            *quaternion_cursor++ = *original_cursor++;
        }
        // Swap in the quaternion parameters.
        delete[]parameters_;
        parameters_ = quaternion_parameters;
    }
}

//构造函数读入数据txt,将数据存入类成员中。猜测这里是反向过程,由类成员中存储的数据,生成一个待优化数据.txt。
void BALProblem::WriteToFile(const std::string &filename) const {
    FILE *fptr = fopen(filename.c_str(), "w");

    if (fptr == NULL) {
        std::cerr << "Error: unable to open file " << filename;
        return;
    }

    fprintf(fptr, "%d %d %d %d\n", num_cameras_, num_cameras_, num_points_, num_observations_);

    for (int i = 0; i < num_observations_; ++i) {
        fprintf(fptr, "%d %d", camera_index_[i], point_index_[i]);
        for (int j = 0; j < 2; ++j) {
            fprintf(fptr, " %g", observations_[2 * i + j]);
        }
        fprintf(fptr, "\n");
    }

    for (int i = 0; i < num_cameras(); ++i) {
        double angleaxis[9];
        if (use_quaternions_) {
            //OutPut in angle-axis format.
            QuaternionToAngleAxis(parameters_ + 10 * i, angleaxis);
            memcpy(angleaxis + 3, parameters_ + 10 * i + 4, 6 * sizeof(double));
        } else {
            memcpy(angleaxis, parameters_ + 9 * i, 9 * sizeof(double));
        }
        for (int j = 0; j < 9; ++j) {
            fprintf(fptr, "%.16g\n", angleaxis[j]);
        }
    }

    const double *points = parameters_ + camera_block_size() * num_cameras_;
    for (int i = 0; i < num_points(); ++i) {
        const double *point = points + i * point_block_size();
        for (int j = 0; j < point_block_size(); ++j) {
            fprintf(fptr, "%.16g\n", point[j]);
        }
    }

    fclose(fptr);
}

//将相机的世界坐标位移和3D路标点写入文件
// Write the problem to a PLY file for inspection in Meshlab or CloudCompare
void BALProblem::WriteToPLYFile(const std::string &filename) const {
    std::ofstream of(filename.c_str());

    of << "ply"
       << '\n' << "format ascii 1.0"
       << '\n' << "element vertex " << num_cameras_ + num_points_
       << '\n' << "property float x"
       << '\n' << "property float y"
       << '\n' << "property float z"
       << '\n' << "property uchar red"
       << '\n' << "property uchar green"
       << '\n' << "property uchar blue"
       << '\n' << "end_header" << std::endl;

    // Export extrinsic data (i.e. camera centers) as green points.
    double angle_axis[3];
    double center[3];
    for (int i = 0; i < num_cameras(); ++i) {
        const double *camera = cameras() + camera_block_size() * i;
        CameraToAngelAxisAndCenter(camera, angle_axis, center);
        of << center[0] << ' ' << center[1] << ' ' << center[2]
           << "0 255 0" << '\n';
    }

    // Export the structure (i.e. 3D Points) as white points.
    const double *points = parameters_ + camera_block_size() * num_cameras_;
    for (int i = 0; i < num_points(); ++i) {
        const double *point = points + i * point_block_size();
        for (int j = 0; j < point_block_size(); ++j) {
            of << point[j] << ' ';
        }
        of << "255 255 255\n";
    }
    of.close();
}

/**
 * 
 * 由camera数据中的旋转向量和平移向量解析出相机世界坐标系下的姿态(依旧是旋转向量)和位置(世界坐标系下的xyz),也是用于生成点云用的
 * @param camera 要解析的相机参数,前三维旋转,接着三维平移,这里指用到这6维
 * @param angle_axis 解析出的相机姿态承接数组,也是旋转向量形式
 * @param center 解析出来的相机原点在世界坐标系下的坐标承接数组,XYZ
 */
void BALProblem::CameraToAngelAxisAndCenter(const double *camera,
                                            double *angle_axis,
                                            double *center) const {
    VectorRef angle_axis_ref(angle_axis, 3);
    if (use_quaternions_) {
        QuaternionToAngleAxis(camera, angle_axis);
    } else {
        angle_axis_ref = ConstVectorRef(camera, 3); //读取R
    }

    Eigen::VectorXd inverse_rotation = -angle_axis_ref;  //-R,BAL文件定义,取负号
	
	
    /**
     * 这里解释一下center的计算逻辑:
     * center是指相机原点在世界坐标系下的坐标,那么定义一下:
     * PW_center, 世界坐标系下相机原点的坐标
     * PC_center, 相机坐标系下的相机原点坐标
     * 它俩的关系是什么呢?
     * PW_center*R+t = PC_center
	 * 反向过程就是
	 * PC_center * T^(-1) = PW_center
	 * 那么相机坐标系的原点,在世界坐标系下的坐标就可以求出来了
	 * [R^(T)  -R^(T)*t ] * [相机原点也就是000]
	 * [0      1        ]   [ 1 ]
     * 结果就是   -R^(T) * t   
     *由旋转向量形式表示的旋转,反向过程(也就是求逆)就是旋转向量取负即可。
	 * 所以结果就是cos(theta) * t + ( 1 - cos(theta) ) (n 点乘 t) n  + sin(theta) ( n 叉乘 t ) 
	 */
	
    AngleAxisRotatePoint(inverse_rotation.data(),  //R
                         camera + camera_block_size() - 6, //平移t的数据
                         center);   //结果
    
	//最后加上负号。记住,map类型构造的是引用,能直接对原构造数组进行操作的。
    //说一下这句,这句还是,用center数组的前3维,去构造一个无名的map类型矩阵,并且后面直接跟上*-1操作。
    //VectorRef是Map的一个define。
    //记住Map构造出来是引用,能对原始值直接操作。
	VectorRef(center, 3) *= -1.0;
}

/**
 * 由世界坐标系下的相机姿态和原点位置,生成一个camera数据
 * @param angle_axis 世界坐标到相机坐标变化的旋转向量数据
 * @param center 相机中心在世界坐标系下的位置坐标
 * @param camera 承接数据的camera数组,由于这里只是生成旋转和平移,所以是camera的前6维
 */
void BALProblem::AngleAxisAndCenterToCamera(const double *angle_axis,
                                            const double *center,
                                            double *camera) const {
    ConstVectorRef angle_axis_ref(angle_axis, 3);
    if (use_quaternions_) {
        AngleAxisToQuaternion(angle_axis, camera);
    } else {
        VectorRef(camera, 3) = angle_axis_ref;
    }

	//这里相机姿态R没有取反,原始数据是-R,代表是相机坐标系对世界坐标系的变换
	
	/* 和上面类似
     * 结果就是   -R^(T) * t   
     *
	 * 所以结果就是cos(theta) * t + ( 1 - cos(theta) ) (n 点乘 t) n  + sin(theta) ( n 叉乘 t ) 
	 */
	
	//该函数直接修改了储存相机平移数据的数据
    AngleAxisRotatePoint(angle_axis, center, camera + camera_block_size() - 6);
	
	//最后再取个反
    VectorRef(camera + camera_block_size() - 6, 3) *= -1.0;
}


void BALProblem::Normalize() {
    // Compute the marginal median of the geometry
    std::vector<double> tmp(num_points_);
    Eigen::Vector3d median;
    double *points = mutable_points();//获取路标3D点的位置  
    for (int i = 0; i < 3; ++i) {
        for (int j = 0; j < num_points_; ++j) {
            tmp[j] = points[3 * j + i];
        }
        median(i) = Median(&tmp);  //返回中位数,如果是偶数,取平均值
    }
						
    for (int i = 0; i < num_points_; ++i) {
        VectorRef point(points + 3 * i, 3);
        tmp[i] = (point - median).lpNorm<1>(); //每个点 - 中位数 的LP范数
    }

    const double median_absolute_deviation = Median(&tmp); //再取中位数

    // Scale so that the median absolute deviation of the resulting
    // reconstruction is 100

    const double scale = 100.0 / median_absolute_deviation;

    // X = scale * (X - median)
    for (int i = 0; i < num_points_; ++i) {
        VectorRef point(points + 3 * i, 3);  //
        point = scale * (point - median);   //对每个3D点进行处理,MAP是引用,会改变原数据
    }

    double *cameras = mutable_cameras(); //相机参数
    double angle_axis[3];
    double center[3];
    for (int i = 0; i < num_cameras_; ++i) {
        double *camera = cameras + camera_block_size() * i;
		//angle_axis赋值了R,center为结果
        CameraToAngelAxisAndCenter(camera, angle_axis, center);  //求解世界坐标系下的相机中心坐标
        // center = scale * (center - median)
        VectorRef(center, 3) = scale * (VectorRef(center, 3) - median);  //因为世界路标3D点做了处理,所以这个也要处理
		
		//最终,修改了*camera指向储存的数据的平移数据
        AngleAxisAndCenterToCamera(angle_axis, center, camera);  //因为世界坐标进行处理了,所以将处理后的数据转到相机坐标去
    }
}

//添加噪声
void BALProblem::Perturb(const double rotation_sigma,
                         const double translation_sigma,
                         const double point_sigma) {
    assert(point_sigma >= 0.0);
    assert(rotation_sigma >= 0.0);
    assert(translation_sigma >= 0.0);

    double *points = mutable_points();
    if (point_sigma > 0) {
        for (int i = 0; i < num_points_; ++i) {
            PerturbPoint3(point_sigma, points + 3 * i);
        }
    }

	//这里相机是被分成两块,旋转和平移,
    //旋转是考虑到四元数形式,增加了一步用CameraToAngelAxisAndCenter()从camera中取出三维的angle_axis,
    //然后添加噪声,添加完后再用AngleAxisAndCenterToCamera()重构camera参数
    //平移部分就直接用PerturbPoint3()添加了
	
    for (int i = 0; i < num_cameras_; ++i) {
        double *camera = mutable_cameras() + camera_block_size() * i;

        double angle_axis[3];
        double center[3];
        // Perturb in the rotation of the camera in the angle-axis
        // representation
        CameraToAngelAxisAndCenter(camera, angle_axis, center);
        if (rotation_sigma > 0.0) {
            PerturbPoint3(rotation_sigma, angle_axis);
        }
        AngleAxisAndCenterToCamera(angle_axis, center, camera);

        if (translation_sigma > 0.0)
            PerturbPoint3(translation_sigma, camera + camera_block_size() - 6);
    }
}

common.h

#pragma once

/// 从文件读入BAL dataset原始数据,然后进行分割储存
class BALProblem {
public:
    /// load bal data from text file
    explicit BALProblem(const std::string &filename, bool use_quaternions = false);

    ~BALProblem() {
        delete[] point_index_;
        delete[] camera_index_;
        delete[] observations_;
        delete[] parameters_;
    }

    /// save results to text file
    void WriteToFile(const std::string &filename) const;

    /// save results to ply pointcloud
    void WriteToPLYFile(const std::string &filename) const;

    void Normalize();

    void Perturb(const double rotation_sigma,
                 const double translation_sigma,
                 const double point_sigma);

    int camera_block_size() const { return use_quaternions_ ? 10 : 9; }

    int point_block_size() const { return 3; }

    int num_cameras() const { return num_cameras_; }

    int num_points() const { return num_points_; }

    int num_observations() const { return num_observations_; }

    int num_parameters() const { return num_parameters_; }

    const int *point_index() const { return point_index_; }

    const int *camera_index() const { return camera_index_; }

    const double *observations() const { return observations_; }

    const double *parameters() const { return parameters_; }

    const double *cameras() const { return parameters_; }

    const double *points() const { return parameters_ + camera_block_size() * num_cameras_; }

    /// camera参数的起始地址
    double *mutable_cameras() { return parameters_; }

    double *mutable_points() { return parameters_ + camera_block_size() * num_cameras_; }

    double *mutable_camera_for_observation(int i) {
        return mutable_cameras() + camera_index_[i] * camera_block_size();
    }

    double *mutable_point_for_observation(int i) {
        return mutable_points() + point_index_[i] * point_block_size();
    }

    const double *camera_for_observation(int i) const {
        return cameras() + camera_index_[i] * camera_block_size();
    }

    const double *point_for_observation(int i) const {
        return points() + point_index_[i] * point_block_size();
    }

private:
    void CameraToAngelAxisAndCenter(const double *camera,
                                    double *angle_axis,
                                    double *center) const;

    void AngleAxisAndCenterToCamera(const double *angle_axis,
                                    const double *center,
                                    double *camera) const;

    int num_cameras_;
    int num_points_;
    int num_observations_;
    int num_parameters_;
    bool use_quaternions_;

    int *point_index_;      // 每个observation对应的point index
    int *camera_index_;     // 每个observation对应的camera index
    double *observations_;  
    double *parameters_;
};

4.random.h

#ifndef RAND_H
#define RAND_H

#include <math.h>
#include <stdlib.h>

inline double RandDouble()
{
    double r = static_cast<double>(rand());
    return r / RAND_MAX;
}

inline double RandNormal()
{
    double x1, x2, w;
    do{
        x1 = 2.0 * RandDouble() - 1.0;
        x2 = 2.0 * RandDouble() - 1.0;
        w = x1 * x1 + x2 * x2;
    }while( w >= 1.0 || w == 0.0);

    w = sqrt((-2.0 * log(w))/w);
    return x1 * w;
}

#endif // random.h

rotation.h

#ifndef ROTATION_H
#define ROTATION_H

#include <algorithm>
#include <cmath>
#include <limits>

//////////////////////////////////////////////////////////////////
// math functions needed for rotation conversion. 

// dot and cross production 

template<typename T>
inline T DotProduct(const T x[3], const T y[3]) {
    return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
}

template<typename T>
inline void CrossProduct(const T x[3], const T y[3], T result[3]) {
    result[0] = x[1] * y[2] - x[2] * y[1];
    result[1] = x[2] * y[0] - x[0] * y[2];
    result[2] = x[0] * y[1] - x[1] * y[0];
}


//////////////////////////////////////////////////////////////////


// Converts from a angle anxis to quaternion : 
template<typename T>
inline void AngleAxisToQuaternion(const T *angle_axis, T *quaternion) {
    const T &a0 = angle_axis[0];
    const T &a1 = angle_axis[1];
    const T &a2 = angle_axis[2];
    const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;

    if (theta_squared > T(std::numeric_limits<double>::epsilon())) {
        const T theta = sqrt(theta_squared);
        const T half_theta = theta * T(0.5);
        const T k = sin(half_theta) / theta;
        quaternion[0] = cos(half_theta);
        quaternion[1] = a0 * k;
        quaternion[2] = a1 * k;
        quaternion[3] = a2 * k;
    } else { // in case if theta_squared is zero
        const T k(0.5);
        quaternion[0] = T(1.0);
        quaternion[1] = a0 * k;
        quaternion[2] = a1 * k;
        quaternion[3] = a2 * k;
    }
}

template<typename T>
inline void QuaternionToAngleAxis(const T *quaternion, T *angle_axis) {
    const T &q1 = quaternion[1];
    const T &q2 = quaternion[2];
    const T &q3 = quaternion[3];
    const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;

    // For quaternions representing non-zero rotation, the conversion
    // is numercially stable
    if (sin_squared_theta > T(std::numeric_limits<double>::epsilon())) {
        const T sin_theta = sqrt(sin_squared_theta);
        const T &cos_theta = quaternion[0];

        // If cos_theta is negative, theta is greater than pi/2, which
        // means that angle for the angle_axis vector which is 2 * theta
        // would be greater than pi...

        const T two_theta = T(2.0) * ((cos_theta < 0.0)
                                      ? atan2(-sin_theta, -cos_theta)
                                      : atan2(sin_theta, cos_theta));
        const T k = two_theta / sin_theta;

        angle_axis[0] = q1 * k;
        angle_axis[1] = q2 * k;
        angle_axis[2] = q3 * k;
    } else {
        // For zero rotation, sqrt() will produce NaN in derivative since
        // the argument is zero. By approximating with a Taylor series,
        // and truncating at one term, the value and first derivatives will be
        // computed correctly when Jets are used..
        const T k(2.0);
        angle_axis[0] = q1 * k;
        angle_axis[1] = q2 * k;
        angle_axis[2] = q3 * k;
    }

}

template<typename T>
inline void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
    const T theta2 = DotProduct(angle_axis, angle_axis); 
    if (theta2 > T(std::numeric_limits<double>::epsilon())) {
        // Away from zero, use the rodriguez formula
        //
        //   result = pt costheta +
        //            (w x pt) * sintheta +
        //            w (w . pt) (1 - costheta)
        //
        // We want to be careful to only evaluate the square root if the
        // norm of the angle_axis vector is greater than zero. Otherwise
        // we get a division by zero.
        //
        const T theta = sqrt(theta2);  //旋转角度,单位弧度
        const T costheta = cos(theta);
        const T sintheta = sin(theta);
        const T theta_inverse = 1.0 / theta;

        const T w[3] = {angle_axis[0] * theta_inverse,   //归一化
                        angle_axis[1] * theta_inverse,
                        angle_axis[2] * theta_inverse};

        // Explicitly inlined evaluation of the cross product for
        // performance reasons.
        /*const T w_cross_pt[3] = { w[1] * pt[2] - w[2] * pt[1],
                                  w[2] * pt[0] - w[0] * pt[2],
                                  w[0] * pt[1] - w[1] * pt[0] };*/
        T w_cross_pt[3];
        CrossProduct(w, pt, w_cross_pt); //t 叉乘 n

        const T tmp = DotProduct(w, pt) * (T(1.0) - costheta); //t 点乘 n 
        //    (w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta);

        result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp;
        result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp;
        result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp;
    } else {
        // Near zero, the first order Taylor approximation of the rotation
        // matrix R corresponding to a vector w and angle w is
        //
        //   R = I + hat(w) * sin(theta)
        //
        // But sintheta ~ theta and theta * w = angle_axis, which gives us
        //
        //  R = I + hat(w)
        //
        // and actually performing multiplication with the point pt, gives us
        // R * pt = pt + w x pt.
        //
        // Switching to the Taylor expansion near zero provides meaningful
        // derivatives when evaluated using Jets.
        //
        // Explicitly inlined evaluation of the cross product for
        // performance reasons.
        /*const T w_cross_pt[3] = { angle_axis[1] * pt[2] - angle_axis[2] * pt[1],
                                  angle_axis[2] * pt[0] - angle_axis[0] * pt[2],
                                  angle_axis[0] * pt[1] - angle_axis[1] * pt[0] };*/
        T w_cross_pt[3];
        CrossProduct(angle_axis, pt, w_cross_pt);

        result[0] = pt[0] + w_cross_pt[0];
        result[1] = pt[1] + w_cross_pt[1];
        result[2] = pt[2] + w_cross_pt[2];
    }
}

#endif // rotation.h

5.CMakeLists.txt

cmake_minimum_required(VERSION 2.8)

project(bundle_adjustment)
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-O3 -std=c++11")

LIST(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)

Find_Package(G2O REQUIRED)
Find_Package(Eigen3 REQUIRED)
Find_Package(Ceres REQUIRED)
Find_Package(Sophus REQUIRED)
Find_Package(CSparse REQUIRED)

SET(G2O_LIBS g2o_csparse_extension g2o_stuff g2o_core cxsparse)

include_directories(${PROJECT_SOURCE_DIR} ${EIGEN3_INCLUDE_DIR} ${CSPARSE_INCLUDE_DIR})

add_library(bal_common common.cpp)
add_executable(bundle_adjustment_g2o bundle_adjustment_g2o.cpp)
add_executable(bundle_adjustment_ceres bundle_adjustment_ceres.cpp)

target_link_libraries(bundle_adjustment_ceres ${CERES_LIBRARIES} bal_common)
target_link_libraries(bundle_adjustment_g2o ${G2O_LIBS} bal_common)

上一篇:Windbg如何排查程序死锁


下一篇:库表分析-sql语句