poj2767,单向连通图判定,缩点+重新建图+新图DFS

/*该题被博客里标记为中等题,30分钟内1A,掌握了算法就简单了,单向连通图判定,单向连通图缩点
后必然唯一存在出度为0的点和入度为0的点,并且从入度为0的点出发,可以遍历所有点后到达出度为0点
(一条长链),(容易反证),所以缩点后,我重新建图(以前觉得重新建图好麻烦,现在看来SO easy),
,对新有向无环图,从入度为0的点做dfs(回溯时要标记回来,因为要所有dfs路线),有一条深度到达
强连通分支数即为yes,反之no*/
#include<iostream> //297MS, 1A,简单题。
#include<vector>
#include<cstdio>
#include<cstring>
#include<stack>
using namespace std;
int n;int m;
const int MAX=1001;
vector<vector<int> >edges(MAX); //原图
vector<vector<int> >newedge(MAX);//缩点后图
int visited[MAX]; //原图tarjan
int low[MAX];
int dfn[MAX];
bool mark[MAX]; //新图dfs标记
int Strongly_connected_branch[MAX]; //并为一个强连通,标记为1.2.3...
int num;int times;
stack<int>s;
bool instack[MAX];
int ind[MAX]; //入度数组
void tarjan(int u)
{
low[u]=dfn[u]=times++;
instack[u]=1;
s.push(u);
int len=edges[u].size();
for(int i=0;i<len;i++)
{
int v=edges[u][i];
if(visited[v]==0)
{
visited[v]=1;
tarjan(v);
if(low[u]>low[v])low[u]=low[v];
}
else if(instack[v]&&low[u]>dfn[v]) //有向图,要问是否在栈中,后向边,V为U某个祖先
{
low[u]=dfn[v];
}
}
if(dfn[u]==low[u]) //在一个SCC
{
num++;int temp;
do
{
temp=s.top();
instack[temp]=0;
s.pop();
Strongly_connected_branch[temp]=num;
} while(temp!=u);
}
}
bool is_no;
void dfs(int u,int depth) //新图的dfs
{
if(depth==num)is_no=true;
int len=newedge[u].size();
for(int i=0;i<len;i++)
{
int v=newedge[u][i];
if(mark[v]==0)
{
mark[v]=1;
dfs(v,depth+1);
mark[v]=0;
}
}
}
void readin()
{
scanf("%d%d",&n,&m);
int from,to;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&from,&to);
edges[from].push_back(to);
}
}
void initialize() //初始化
{
is_no=num=times=0;
for(int i=0;i<=n;i++)
{
ind[i]=0;
mark[i]=instack[i]=low[i]=dfn[i]=visited[i]=0;
edges[i].clear();
newedge[i].clear();
Strongly_connected_branch[i]=-1;
}
}
void solve()
{
for(int i=1;i<=n;i++)
if(visited[i]==0)
{
visited[i]=1;
tarjan(i);
}
for(int i=1;i<=n;i++) //重新建图,不在同一个SCB的边留下即可。
{
int len=edges[i].size();
for(int j=0;j<len;j++)
{
int v=edges[i][j];
if(Strongly_connected_branch[v]!=Strongly_connected_branch[i]) //注意用SCB序号作代表元(新节点)来重新建图
{
ind[Strongly_connected_branch[v]]++;
newedge[Strongly_connected_branch[i]].push_back(Strongly_connected_branch[v]);
}
}
}
int is_0ind;
for(int i=1;i<=num;i++) //找到入度为0的点,做起点dfs
{
if(ind[i]==0)is_0ind=i;
}
mark[is_0ind]=1;
dfs(is_0ind,1);
if(is_no)printf("Yes\n");
else printf("No\n");
}
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
initialize();
readin();
solve();
}
return 0;
}
上一篇:NX二次开发-UFUN重命名图纸页UF_DRAW_rename_drawing


下一篇:js_加入收藏夹功能