-
题意:有一颗树,根结点为\(1\).\(q\)个询问,每次问你共有多少经过\(u\)点且到根节点距离为\(d\)的点.
-
题解:这题技巧性好强,我们从根节点遍历整颗树,用时间轴记录搜到和离开的时间\(in_i\)和\(out_i\),同时存入同一深度的所有\(in_i\),方便后面计算.对于某个父亲结点\(u\),它的一个子树结点为\(v\),必然满足:\(in_u\le in_v <out_u\).那么对于每次询问的\(U_i\),我要去找深度为\(d\)的它或它的子树结点,也就是找出所有深度为\(d\)且满足\(in_u\le in_i<out_u\)的点,这里可以用二分查找.
-
代码:
#include <bits/stdc++.h> #define ll long long #define fi first #define se second #define pb push_back #define me memset #define rep(a,b,c) for(int a=b;a<=c;++a) #define per(a,b,c) for(int a=b;a>=c;--a) const int N = 1e6 + 10; const int mod = 1e9 + 7; const int INF = 0x3f3f3f3f; using namespace std; typedef pair<int,int> PII; typedef pair<ll,ll> PLL; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll lcm(ll a,ll b) {return a/gcd(a,b)*b;} int n; int p; vector<int> edge[N]; int q; int u,d; vector<int> v[N]; int timestamp; int in[N],out[N]; void dfs(int u,int dep){ in[u]=timestamp++; v[dep].pb(in[u]); for(auto w:edge[u]){ dfs(w,dep+1); } out[u]=timestamp++; } int main() { ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); cin>>n; for(int i=2;i<=n;++i){ cin>>p; edge[p].pb(i); } dfs(1,0); cin>>q; for(int i=1;i<=q;++i){ cin>>u>>d; cout<<lower_bound(v[d].begin(),v[d].end(),out[u])-lower_bound(v[d].begin(),v[d].end(),in[u])<<'\n'; } return 0; }
相关文章
- 12-26AISing Programming Contest 2021(AtCoder Beginner Contest 202)E - Count Descendants
- 12-26AISing Programming Contest 2021(AtCoder Beginner Contest 202) E - Count Descendants (dfs,思维)
- 12-26AISing Programming Contest 2021(AtCoder Beginner Contest 202)E - Count Descendants
- 12-26AISing Programming Contest 2021(AtCoder Beginner Contest 202)D.aab aba baa