1 second
256 megabytes
standard input
standard output
Dreamoon likes to play with sets, integers and . is defined as the largest positive integer that divides both a and b.
Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements si, sj from S, .
Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution.
The single line of the input contains two space separated integers n, k (1 ≤ n ≤ 10 000, 1 ≤ k ≤ 100).
On the first line print a single integer — the minimal possible m.
On each of the next n lines print four space separated integers representing the i-th set.
Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them.
1 1
5
1 2 3 5
2 2
22
2 4 6 22
14 18 10 16
For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since .
题意: 给你任意n,k,要你求出n组gcd(si,sj)=k的四个元素的组合.........
其实对于gcd(a,b)=k,我们只需要求出gcd(a,b)=1;然后进行gcd(a,b)*k=k;
不难发现这些数是固定不变的而且还有规律可循,即1,2,3,5 7 8 9 11 13 14 15 17 每一个段直接隔着2,段内前3个连续,后一个隔着2.....
代码:
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=;
__int64 ans[maxn][];
void work()
{
__int64 k=;
for(int i=;i<;i++)
{
ans[i][]=k++;
ans[i][]=k++;
ans[i][]=k++;
ans[i][]=++k;
k+=;
}
}
int main()
{
int n,k;
work();
while(scanf("%d%d",&n,&k)!=EOF)
{
printf("%I64d\n",ans[n-][]*k);
for(int i=;i<n;i++)
printf("%I64d %I64d %I64d %I64d\n",ans[i][]*k,ans[i][]*k,ans[i][]*k,ans[i][]*k);
}
return ;
}