Description
我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1。一个元素相邻的元素包括它本
身,及他上下左右的4个元素(如果存在)。
给定矩阵的行数和列数,请计算并输出一个和谐的矩阵。注意:所有元素为0的矩阵是不允许的。
Input
输入一行,包含两个空格分隔的整数m和n,分别表示矩阵的行数和列数。
Output
输出包含m行,每行n个空格分隔整数(0或1),为所求矩阵。测试数据保证有解。
Sample Input
4 4
Sample Output
0 1 0 0
1 1 1 0
0 0 0 1
1 1 0 1
1 1 1 0
0 0 0 1
1 1 0 1
数据范围
1 <=m, n <=40
Solution
咋感觉我写了三个高斯消元的题三个板子都长得不一样
讲真这个题不知道比1770那个题低到哪里去了(其实差不多)
会做那个题一定会做这个【认真脸
很明显这个还是构造01矩阵然后解异或方程组
只不过这个构造出来的矩阵是n*m的,n^3显然很吃力
那么我们把1770代码里的异或用bitset来搞常数就小很多了
听说bitset随便虐1e9?
讲真这个题不知道比1770那个题低到哪里去了(其实差不多)
会做那个题一定会做这个【认真脸
很明显这个还是构造01矩阵然后解异或方程组
只不过这个构造出来的矩阵是n*m的,n^3显然很吃力
那么我们把1770代码里的异或用bitset来搞常数就小很多了
听说bitset随便虐1e9?
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#include<bitset>
#define N (1600+100)
#define id(x,y) (x-1)*m+y
using namespace std; bitset<N>f[N];
int ans[N],n,m;
int dx[]={,,-,,,},dy[]={,,,,-,}; void Gauss(int n)
{
for (int i=; i<=n; ++i)
{
int num=i;
for (int j=i+; j<=n; ++j)
if (f[j][i]>f[num][i]) num=j;
if (num!=i) swap(f[i],f[num]); for (int j=i+; j<=n; ++j)
if (f[j][i]) f[j]^=f[i];//这里用bitset来搞常数好像很小
}
for (int i=n; i>=; --i)
{
if (!f[i][i]) ans[i]=;
else
{
for (int j=i+; j<=n; ++j)
f[i][n+]=f[i][n+]^(f[i][j]*ans[j]);
ans[i]=f[i][n+];
}
}
} int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
for (int k=; k<=; ++k)
{
int x=i+dx[k],y=j+dy[k];
if (x> && x<=n && y> && y<=m)
f[id(i,j)][id(x,y)]=;
}
Gauss(n*m);
for (int i=; i<=n; ++i)
{
for (int j=; j<=m-; ++j)
printf("%d ",ans[id(i,j)]);
printf("%d\n",ans[id(i,m)]);
}
}