3503: [Cqoi2014]和谐矩阵
Time Limit: 10 Sec Memory Limit: 128 MBSec Special Judge
Submit: 1197 Solved: 570
[Submit][Status][Discuss]
Description
我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1。一个元素相邻的元素包括它本
身,及他上下左右的4个元素(如果存在)。
给定矩阵的行数和列数,请计算并输出一个和谐的矩阵。注意:所有元素为0的矩阵是不允许的。
Input
输入一行,包含两个空格分隔的整数m和n,分别表示矩阵的行数和列数。
Output
输出包含m行,每行n个空格分隔整数(0或1),为所求矩阵。测试数据保证有解。
Sample Input
4 4
Sample Output
0 1 0 0
1 1 1 0
0 0 0 1
1 1 0 1
1 1 1 0
0 0 0 1
1 1 0 1
数据范围
1 <=m, n <=40
题解
高斯消元解异或方程组
将第一行的未知数设成xi
则可以推出其他行和xi的关系
解方程组即可
代码
//by 减维
#include<set>
#include<map>
#include<queue>
#include<ctime>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define il inline
#define rg register
#define db double
#define mpr make_pair
#define maxn 2005
#define inf (1<<30)
#define eps 1e-8
#define pi 3.1415926535897932384626L
using namespace std; inline int read()
{
int ret=;bool fla=;char ch=getchar();
while((ch<''||ch>'')&&ch!='-')ch=getchar();
if(ch=='-'){fla=;ch=getchar();}
while(ch>=''&&ch<=''){ret=ret*+ch-'';ch=getchar();}
return fla?-ret:ret;
} int n,m,cnt,pos[maxn];
int tx[]={,,,-};
int ty[]={,,-,};
bitset<maxn> a[maxn]; il int gi(int x,int y){return (x-)*m+y;} void gauss()
{
int now=;
for(int i=;i<=n*m;++i)
{
int j=now+;
while(!a[j][i]&&j<=n*m) j++;
now++;
swap(a[j],a[now]);
for(int k=;k<=n*m;++k)
if(a[k][i]&&k!=now) a[k]^=a[now];
}
} int main()
{
n=read(),m=read();
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
{
a[gi(i,j)][gi(i,j)]=;cnt=;
for(int k=;k<;++k)
{
int x=i+tx[k],y=j+ty[k];
if(x<=||y<=||x>n||y>m) continue ;
a[gi(i,j)][gi(x,y)]=;cnt++;
}
a[gi(i,j)][n*m+]=(cnt&);
}
gauss();
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
printf("%d%c",a[gi(i,j)][n*m+]==?:,j==m?'\n':' ');
return ;
}
补充:实数域的高斯消元
//by 减维
#include<set>
#include<map>
#include<queue>
#include<ctime>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define il inline
#define rg register
#define db double
#define mpr make_pair
#define maxn 505
#define inf (1<<30)
#define eps 1e-5
#define pi 3.1415926535897932384626L
using namespace std; inline int read()
{
int ret=;bool fla=;char ch=getchar();
while((ch<''||ch>'')&&ch!='-')ch=getchar();
if(ch=='-'){fla=;ch=getchar();}
while(ch>=''&&ch<=''){ret=ret*+ch-'';ch=getchar();}
return fla?-ret:ret;
} int n,m,du[maxn],ed[maxn*maxn/][];
db ans,a[maxn][maxn],v[maxn],val[maxn*maxn/]; bool cmp(db x,db y){return x>y;} void gauss()
{
for(int i=;i<=n;++i)
{
int j=i;
for(int k=i+;k<=n;++k) if(fabs(a[k][i])>fabs(a[j][i])) j=k;
if(i!=j) for(int k=i;k<=n+;++k) swap(a[i][k],a[j][k]);
for(int k=i+;k<=n;++k)
{
db p=a[k][i]/a[i][i];
for(int t=i;t<=n+;++t) a[k][t]-=a[i][t]*p;
}
}
for(int i=n;i;i--)
{
for(int j=i+;j<=n;++j) a[i][n+]-=a[i][j]*v[j];
v[i]=a[i][n+]/a[i][i];
}
} int main()
{
n=read(),m=read();
for(int i=;i<=m;++i)
{
ed[i][]=read(),ed[i][]=read();
du[ed[i][]]++;du[ed[i][]]++;
}
for(int i=;i<=m;++i)
{
a[ed[i][]][ed[i][]]=1.0/du[ed[i][]];
a[ed[i][]][ed[i][]]=1.0/du[ed[i][]];
}
for(int i=;i<n;++i) a[i][i]=-1.0;
for(int i=;i<=n;++i) a[n][i]=;
a[n][n]=;a[][n+]=-1.0;
gauss();
for(int i=;i<=m;++i) val[i]=v[ed[i][]]/du[ed[i][]]+v[ed[i][]]/du[ed[i][]];
sort(val+,val+m+,cmp);
for(int i=;i<=m;++i) ans+=1.0*val[i]*i;
printf("%.3lf",ans);
return ;
}