第19课 类型萃取(3)_类型选择的traits

1. std::conditional

(1)原型:template <bool Cond, class T, class F> struct conditional;

//根据条件获取T或F类型
template<bool Cond, class T, class F> //泛化
struct conditional { typedef T type; }; template<class T, class F> //偏特化
struct conditional<false, T, F> { typedef F type; };

(2)说明:

  ①当cond为true时,conditional::type被定义为T类型

  ②当cond为false时,conditional::type被定义为F类型

【编程实验】std::conditional

#include <iostream>
#include <typeinfo>
using namespace std; int main()
{
typedef std::conditional<true, int, float>::type A; //int
typedef std::conditional<false, int, float>::type B; //float
typedef std::conditional<is_integral<A>::value, long, int>::type C; //long
typedef std::conditional<is_integral<B>::value, long, int>::type D; //int //比较两个类型,输出较大的类型
typedef std::conditional<(sizeof(long long) > sizeof(long double)),
long long,
long double>::type max_size_t;
cout << typeid(max_size_t).name() << endl; //long double
return ;
}

2. std::enable_if

(1)enable_if的作用:

  ①当某个 condition 成立时,enable_if可以提供某种类型

  ②具备限定模板参数的作用,可以在编译期检查输入的模板参数是否有效。

  ③可以用来控制重载函数是否可用,以实现强大的重载机制。

(2)std::enable_if的原型

  ①原型: template<bool cond, class T = void> struct enable_if;

//enable_if的可能实现
template<bool Cond, typename T = void>
struct enable_if {}; //注意,没有type类型 template<typename T> //偏特化,注意T的默认值为void
struct enable_if<true, T> { typedef T type; };

  ②在 condition 为真的时候,由于偏特化机制,第2个结构体模板明显是一个更好的匹配,所以 std::enable_if<>::type 就是有效的。

  ③当condition 为假的时候,只有第一个结构体模板能够匹配,所以std::enable_if<>::type 是无效的,会被丢弃。同时,编译器会报错:error: no type named ‘type’ in ‘struct std::enable_if<false, bool>。

【编程实验】利用std::enable_if检查模板参数

#include <iostream>
#include <typeinfo>
using namespace std; //1. 模板参数只能是arithmetic(整型和浮点型)
template<typename T>
typename std::enable_if<is_arithmetic<T>::value, T>::type
foo1(T t)
{
return t;
} //2. 限定入参类型:
template<typename T> //注意限制的是foo1的第2个形参,只能是整型
T foo2(T t, typename std::enable_if<std::is_integral<T>::value, int>::type = )
{
return t;
} //3. 限定模板参数T的类型 (注意限制的是模板的T参数:为intergral类型)、
// 如果T是非integral类型,is_integral<T>::value为false,enable_if<false>::type将报错
template<typename T, class = typename std::enable_if<std::is_integral<T>::value>::type>
T foo3(T t)
{
return t;
} //4. 类模板特化时,参数的限定
//前向声明,A为类模板
template<class T, class Enable = void> class A; template<class T> //模板特化
class A<T, typename std::enable_if<std::is_floating_point<T>::value>::type> //对模板参数的限定
{}; int main()
{
//1.
auto r1 = foo1(); //返回整数1
auto r2 = foo1(1.2); //返回浮点数1.2
//auto r3 = foo1("test"); //error //2. 限定入参类型
foo2(, ); //ok
//foo2(1, ""); //error,第二个参数应为integral类型 //3.限定模板参数
foo3();
//foo3(1.2); //error,模板参数的类型应为integral类型z z //4.类模板特化时,参数的限定
A<double> a1; //ok,先匹配特化模板,所以a的类型为A<double, double>
//A<double, double> a2; //error, 显式指式两个参数。因此匹配的是第1个模板,但由于这里只是声明
//而未定义类(注意class A和class A{}的区别),所以会报A是个未完整类的错误。
//A<int> a3; //先匹配特化模板(失败)。再匹配A<int, void>模板,但由于class A只是声明,会与a2一样。
//的错误。 return ;
}

(3)注意事项

  ①T的默认值为void类型,即enable_if的第2个模板参数不指定时,当cond为真,默认会获取到的类型为void。

  ②当cond为假时,由于std::enable_if<>::type是无效的,因此编译器会报错。

【编程实验】利用std::enable_if根据条件选择重载函数

#include <iostream>
using namespace std; //利用std::enable_if根据条件选择重载函数 /********************************************************************************************/
//利用std::enable_if来选择重载的模板函数foo
//(注意,两个模板函数仅返回值不同!而模板参数从形式上看虽然相同,但实参推导后T类型是不同的!) //1. 模板函数的参数相同,返回值不同函数的重载。(注意,实际推导后形参其实是不同的!)
template <class T>
typename std::enable_if<std::is_arithmetic<T>::value>::type //T为arithmetic类型时,返回值void
foo(T& t) //两个foo函数,模板参数相同。但实际推导后这里是arithmetic类型。
{
return;
} template <class T>
typename std::enable_if<std::is_class<T>::value, T>::type& //T为class时,T&
foo(T& t)
{
return t;
} //2. 模板函数的形参相同,返回值相同的函数重载。(注意,实际推导后形参其实是不同的!)
//函数功能:将输入的参数转为string类型
//(对于arithemic类型调用std::to_string(t),对于string类型返回其本身)
template<class T>
typename std::enable_if<std::is_arithmetic<T>::value, string>::type //返回值string
toString(T& t)
{
return std::to_string(t);
} template<class T>
typename std::enable_if<std::is_same<T, string>::value, string>::type //返回值
toString(T& t)
{
return t;
} class Test{}; /********************************************************************************************/
//3. 可调用对象包装器的实现
//3.1 无返回值的情况:
template<class FT,class...Args>
auto call(FT&& f, Args&&...args)-> //返回值为void
typename std::enable_if<std::is_void<typename std::result_of<FT(Args...)>::type>::value, void>::type
{
f(std::forward<Args>(args)...);
} //3.2 有返回值的情况
template<class FT, class...Args>
auto call(FT&& f, Args&&...args)-> //当f有返回值时,则返回f原来的返回类型
typename std::enable_if<!std::is_void<typename std::result_of<FT(Args...)>::type>::value,
typename std::result_of<FT(Args...)>::type>::type
{
return f(std::forward<Args>(args)...);
} //3.3 万能包装器(统一以上两种情况)
template<typename FT, class...Args>
auto FuncWrap(FT&& func, Args&& ...args)->decltype(func(std::forward<Args>(args)...))
{
return func(std::forward<Args>(args)...);
} int func(int a, int b)
{
cout << "int func(int a, int b):" << a + b << endl;
return a + b;
} int main()
{
//1. 选择foo重载函数(返回值不同)
int x = ;
foo(x); //匹配第1个模板,返回void类型
Test t;
foo(t); //匹配第2个模板,返回Test& //2. 选择toString重载函数(返回值相同)
cout << toString(x) << endl;
string s("abc");
cout << toString(s)<< endl; //3. 可调用对象包装器
auto lda = [](){cout << "do anything you want!" << endl;};
call(lda); //无返回值
call([](int a){cout << "a = " << a << endl;}, );
call(func, , ); //带返回值 FuncWrap(lda); //无返回值
FuncWrap(func, , ); //带返回值 return ;
}
/*输出结果
e:\Study\C++11\19>g++ -std=c++11 test3.cpp
e:\Study\C++11\19>a.exe
1
abc
do anything you want!
a = 1
int func(int a, int b):3
do anything you want!
int func(int a, int b):3
*/
上一篇:web中的相对路径与绝对路径


下一篇:log4j的简单应用(转载)