HDU/杭电2013多校第三场解题报告

今天悲剧了,各种被虐啊,还是太年轻了HDU/杭电2013多校第三场解题报告

Crime

这道题目给的时间好长,第一次就想到了暴力,结果华丽丽的TLE了。

后来找了一下,发现前24个是1, 2, 6, 12, 72, 72, 864, 1728, 13824, 22032, 555264, 476928, 17625600, 29599488, 321115392, 805146624, 46097049600, 36481536000, 2754120268800, 3661604352000, 83905105305600, 192859121664000, 20092043520000000, 15074060547686400。这样我们就需要找到递推的式子。可是怎么也推不出。请路过的大神指教。。。

JZPTREE

这道题目是我看的,题目挺好懂的,就是数据量太大。不知道怎么写,最后想尽办法也只能压缩到十二亿。果断不行,怎么优化呢?

Jinkeloid

深坑....

The Unsolvable Problem

这道题目是过的最多的了题目了。就是that a + b = n and [a, b] is as large as possible. [a, b] denote the least common multiplier of a, b.这样的话就直接求就行了。是偶数的话变成前后值,否则前后判:


#include <iostream>
#include <cstdio>
#include <string>
#include <string.h>
#include <map>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <queue>
#include <set>
#include <stack>
using namespace std; int main()
{
int t;
__int64 n;
cin>>t;
while(t--)
{
cin>>n;
if(n==2)
{
cout<<1<<endl;
continue;
}
if(n%2==1)
{
cout<<(n/2)*(n/2+1)<<endl;
}
else
{
if((n/2)%2==0)
{
cout<<(n/2-1)*(n/2+1)<<endl;
}
else
{
cout<<(n/2-2)*(n/2+2)<<endl;
}
}
}
return 0;
}

Pieces

这是经次于上一道出的最多的题了。就是把一个字符串变空。用的方法就是每次去一个回文串,直到取空。唯一的要求就是最后操作的次数要最小。这道题目需要考虑每次操作之后对后续的影响,不能直接求最长的回文串,可能后面就会因为这次操作而增加了操作次数;

Burning

一道几何题目,特判,精度...


Sad Love Story

这道题目T到死了。先用最近点对的方法求了,TTT。后来有交KD-tree的,结果也T了,这不科学啊,20S额。这:

#include <iostream>
#include <cstdio>
#include <string>
#include <string.h>
#include <map>
#include <vector>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <cmath>
#include <queue>
#include <set>
#include <stack>
using namespace std;
// 分治算法求最近点对 struct point
{
__int64 x , y;
} p[500005],pp[500005]; __int64 a[500005]; //保存筛选的坐标点的索引 __int64 cmpx(const point &a , const point &b)
{
return a.x < b.x;
}
__int64 cmpy(__int64 a , __int64 b) //这里用的是下标索引
{
return p[a].y < p[b].y;
}
inline __int64 dis(point &a , point &b)
{
return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y);
}
inline __int64 min(__int64 a , __int64 b)
{
return a < b ? a : b;
}
__int64 closest(__int64 low , __int64 high)
{
if(low + 1 == high)
return dis(p[low] , p[high]);
if(low + 2 == high)
return min(dis(p[low] , p[high]) , min( dis(p[low] , p[low+1]) , dis(p[low+1] , p[high]) ));
__int64 mid = (low + high)>>1;//求中点
__int64 ans = min( closest(low , mid) , closest(mid + 1 , high) ); //分治法进行递归求解
__int64 i , j , cnt = 0;
for(i = low ; i <= high ; ++i) //把x坐标在p[mid].x-ans~p[mid].x+ans范围内的点取出来
{
if(p[i].x >= p[mid].x - ans && p[i].x <= p[mid].x + ans)
a[cnt++] = i; //保存的是下标索引
}
sort(a,a + cnt,cmpy); //按y坐标进行升序排序
for(i = 0 ; i < cnt ; ++i)
{
for(j = i+1 ; j < cnt ; ++j)
{
if(p[a[j]].y - p[a[i]].y >= ans) //注意下标索引
break;
ans = min(ans , dis(p[a[i]] , p[a[j]]));
}
}
return ans;
}
int main()
{
__int64 t;
scanf("%I64d", &t);
__int64 n, ax, bx,cx,ay,by,cy;
__int64 ans = 0;
while(t--)
{
ans = 0;
scanf("%I64d", &n);
scanf("%I64d%I64d%I64d%I64d%I64d%I64d", &ax,&bx,&cx,&ay,&by,&cy);
for(int i = 0; i < n; ++i)
{
if(i==0)
{
pp[i].x = (0*ax+bx)%cx;
pp[i].y = (0*ay+by)%cy;
}
else
{
pp[i].x = (pp[i-1].x*ax+bx)%cx;
pp[i].y = (pp[i-1].y*ay+by)%cy;
int tp = i;
for(int kp = 0; kp <= i; ++kp)
{
p[kp].x = pp[kp].x;
p[kp].y = pp[kp].y;
}
sort(p , p+tp+1 , cmpx);
ans += closest(0 , tp);
}
}
printf("%I64d\n", ans);
}
return 0;
}

KD-tree


#include <iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define D 2
#define N 500010
const int inf=1000000001;
const long long Inf=1ll*inf*inf;
struct kdnode
{
int x[D];
int split;
int l,r,p;
} kdtree[N],q[N];
bool operator==(const kdnode &a,const kdnode &b)
{
for(int i=0; i<D; i++)
{
if(a.x[i]!=b.x[i])return false;
}
return true;
}
double avg[D],var[D];
int n;
void calAvg(int l,int r)
{
for(int i=0; i<D; i++)avg[i]=0;
for(int i=l; i<=r; i++)
for(int j=0; j<D; j++)
avg[j]+=1.0*kdtree[i].x[j]/(r-l+1);
}
void calVar(int l,int r)
{
for(int i=0; i<D; i++)var[i]=0;
for(int i=l; i<=r; i++)
for(int j=0; j<D; j++)
var[j]+=1.0*(kdtree[i].x[j]-avg[j])/n*(kdtree[i].x[j]-avg[j]);
}
int splitD;
double maxVar;
bool cmp(kdnode a,kdnode b)
{
return a.x[splitD]<b.x[splitD];
}
int construct(int p,int l,int r)
{
if(r<l)return -1;
int root=(l+r)/2;
calAvg(l,r);
calVar(l,r);
maxVar=-1.0;
for(int i=0; i<D; i++)
if(var[i]>maxVar)
maxVar=var[i],splitD=i;
sort(kdtree+l,kdtree+r+1,cmp);
kdtree[root].split=splitD;
kdtree[root].l=construct(root,l,root-1);
kdtree[root].r=construct(root,root+1,r);
kdtree[root].p=p;
return root;
}
int Find(int root,kdnode x)
{
if(root==-1)return -1;
if(x==kdtree[root])
{
return root;
}
int d=kdtree[root].split;
if(x.x[d]>kdtree[root].x[d])
{
return Find(kdtree[root].r,x);
}
else if(x.x[d]<kdtree[root].x[d])
{
return Find(kdtree[root].l,x);
}
else
{
int l=Find(kdtree[root].l,x);
int r=Find(kdtree[root].r,x);
return (l==-1?r:l);
}
}
int FindMin(int root,int d)
{
int ret=root;
if(kdtree[root].l!=-1)
{
int v=FindMin(kdtree[root].l,d);
if(kdtree[ret].x[d]>kdtree[v].x[d])
ret=v;
}
if(kdtree[root].r!=-1)
{
int v=FindMin(kdtree[root].r,d);
if(kdtree[ret].x[d]>kdtree[v].x[d])
ret=v;
}
return ret;
}
int FindMax(int root,int d)
{
int ret=root;
if(kdtree[root].l!=-1)
{
int v=FindMax(kdtree[root].l,d);
if(kdtree[ret].x[d]<kdtree[v].x[d])
ret=v;
}
if(kdtree[root].r!=-1)
{
int v=FindMax(kdtree[root].r,d);
if(kdtree[ret].x[d]<kdtree[v].x[d])
ret=v;
}
return ret;
}
void DeleteNode(int v)
{
int p=kdtree[v].p;
kdtree[v].p=-1;
if(kdtree[p].l==v)
kdtree[p].l=-1;
else
kdtree[p].r=-1;
}
void Remove(int root,kdnode x)
{
int pos=Find(root,x);
if(kdtree[pos].l==-1&&kdtree[pos].r==-1)
{
DeleteNode(pos);
}
else if(kdtree[pos].l==-1)
{
int alt=FindMin(kdtree[pos].r,kdtree[pos].split);
for(int i=0; i<D; i++)kdtree[pos].x[i]=kdtree[alt].x[i];
Remove(alt,kdtree[alt]);
}
else
{
int alt=FindMax(kdtree[pos].l,kdtree[pos].split);
for(int i=0; i<D; i++)kdtree[pos].x[i]=kdtree[alt].x[i];
Remove(alt,kdtree[alt]);
}
}
void Insert(int root,int x)
{
int d=kdtree[root].split;
if(kdtree[root].x[d]<kdtree[x].x[d])
{
if(kdtree[root].r==-1)
{
kdtree[root].r=x;
kdtree[x].p=root;
}
else Insert(kdtree[root].r,x);
}
else
{
if(kdtree[root].l==-1)
{
kdtree[root].l=x;
kdtree[x].p=root;
}
else Insert(kdtree[root].l,x);
}
}
void Add(int root,kdnode x)
{
int pos=n;
kdtree[n++]=x;
Insert(root,pos);
} long long dist(kdnode a,kdnode b)
{
long long ret=0;
for(int i=0; i<D; i++)
{
ret+=1ll*(a.x[i]-b.x[i])*(a.x[i]-b.x[i]);
}
return ret;
}
long long query(int root,kdnode x)
{
if(root==-1)return Inf;
int d=kdtree[root].split;
long long ret;
if(x.x[d]<kdtree[root].x[d])
{
ret=query(kdtree[root].l,x);
double dd=1.0*x.x[d]+sqrt(1.0*ret);
if(dd>=1.0*kdtree[root].x[d])
{
ret=min(ret,query(kdtree[root].r,x));
}
}
else if(x.x[d]>kdtree[root].x[d])
{
ret=query(kdtree[root].r,x);
double dd=1.0*x.x[d]-sqrt(1.0*ret);
if(dd<=1.0*kdtree[root].x[d])
{
ret=min(ret,query(kdtree[root].l,x));
}
}
else
{
ret=query(kdtree[root].l,x);
ret=min(ret,query(kdtree[root].r,x));
}
ret=min(ret,dist(kdtree[root],x));
return ret;
} int main()
{
// freopen("in","w",stdout);
int t;
long long px,py;
long long ax,bx,cx,ay,by,cy;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
px=py=0;
scanf("%I64d%I64d%I64d%I64d%I64d%I64d",&ax,&bx,&cx,&ay,&by,&cy);
px=(ax*px+bx)%cx;
py=(ay*py+by)%cy;
// puts("fdsf");
for(int i=0; i<1; i++)
{
kdtree[i].split=0;
kdtree[i].p=kdtree[i].l=kdtree[i].r=-1;
kdtree[i].x[0]=px;
kdtree[i].x[1]=py;
q[i]=kdtree[i];
// cout<<px<<" "<<py<<endl;
}
int root=construct(-1,0,0); px=(ax*px+bx)%cx;
py=(ay*py+by)%cy;
q[1].split=0;
q[1].p=q[1].l=q[1].r=-1;
q[1].x[0]=px;
q[1].x[1]=py;
// cout<<px<<" "<<py<<endl;
long long mindis=query(root,q[1]);
long long ans=mindis;
Add(root,q[1]);
// cout<<mindis<<endl;
// printf("%I64d\n",mindis);
int m=n;
for(int i=3; i<m; i++)
{
// printf("%d %d\n",i,n);
px=(ax*px+bx)%cx;
py=(ay*py+by)%cy;
q[i].split=0;
q[i].p=q[i].l=q[i].r=-1;
q[i].x[0]=px;
q[i].x[1]=py;
mindis=min(mindis,query(root,q[i]));
if(mindis==0LL)break;
ans+=mindis;
Add(root,q[i]);
}
printf("%I64d\n",ans);
}
return 0;
}

不淡定了....


上一篇:idea svn performing vcs refresh 很长时间


下一篇:Jenkins进阶-Git多仓库代码下载编译 (13)