推送avro格式数据到topic
源代码:https://github.com/Neuw84/structured-streaming-avro-demo/blob/master/src/main/java/es/aconde/structured/GeneratorDemo.java
package es.aconde.structured; import com.twitter.bijection.Injection;
import com.twitter.bijection.avro.GenericAvroCodecs;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.SplittableRandom;
import java.util.Properties; /**
* Fake data generator for Kafka
*
* @author Angel Conde
*/
public class GeneratorDemo { /**
* Avro defined schema
*/
public static final String USER_SCHEMA = "{"
+ "\"type\":\"record\","
+ "\"name\":\"alarm\","
+ "\"fields\":["
+ " { \"name\":\"str1\", \"type\":\"string\" },"
+ " { \"name\":\"str2\", \"type\":\"string\" },"
+ " { \"name\":\"int1\", \"type\":\"int\" }"
+ "]}"; /**
*
* @param args
* @throws InterruptedException
*/
public static void main(String[] args) throws InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer"); Schema.Parser parser = new Schema.Parser();
Schema schema = parser.parse(USER_SCHEMA);
Injection<GenericRecord, byte[]> recordInjection = GenericAvroCodecs.toBinary(schema); KafkaProducer<String, byte[]> producer = new KafkaProducer<>(props);
SplittableRandom random = new SplittableRandom(); while (true) {
GenericData.Record avroRecord = new GenericData.Record(schema);
avroRecord.put("str1", "Str 1-" + random.nextInt(10));
avroRecord.put("str2", "Str 2-" + random.nextInt(1000));
avroRecord.put("int1", random.nextInt(10000)); byte[] bytes = recordInjection.apply(avroRecord); ProducerRecord<String, byte[]> record = new ProducerRecord<>("mytopic", bytes);
producer.send(record);
Thread.sleep(100);
} }
}
使用spark structured streaming接收topic解析avro数据
源代码:https://github.com/Neuw84/structured-streaming-avro-demo/blob/master/src/main/java/es/aconde/structured/StructuredDemo.java
package es.aconde.structured; import com.databricks.spark.avro.SchemaConverters;
import com.twitter.bijection.Injection;
import com.twitter.bijection.avro.GenericAvroCodecs;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericRecord;
import org.apache.log4j.Level;
import org.apache.log4j.LogManager;
import org.apache.spark.SparkConf;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.streaming.StreamingQuery;
import org.apache.spark.sql.streaming.StreamingQueryException;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType; /**
* Structured streaming demo using Avro'ed Kafka topic as input
*
* @author Angel Conde
*/
public class StructuredDemo { private static Injection<GenericRecord, byte[]> recordInjection;
private static StructType type;
private static final String USER_SCHEMA = "{"
+ "\"type\":\"record\","
+ "\"name\":\"myrecord\","
+ "\"fields\":["
+ " { \"name\":\"str1\", \"type\":\"string\" },"
+ " { \"name\":\"str2\", \"type\":\"string\" },"
+ " { \"name\":\"int1\", \"type\":\"int\" }"
+ "]}";
private static Schema.Parser parser = new Schema.Parser();
private static Schema schema = parser.parse(USER_SCHEMA); static { //once per VM, lazily
recordInjection = GenericAvroCodecs.toBinary(schema);
type = (StructType) SchemaConverters.toSqlType(schema).dataType(); } public static void main(String[] args) throws StreamingQueryException {
//set log4j programmatically
LogManager.getLogger("org.apache.spark").setLevel(Level.WARN);
LogManager.getLogger("akka").setLevel(Level.ERROR); //configure Spark
SparkConf conf = new SparkConf()
.setAppName("kafka-structured")
.setMaster("local[*]"); //initialize spark session
SparkSession sparkSession = SparkSession
.builder()
.config(conf)
.getOrCreate(); //reduce task number
sparkSession.sqlContext().setConf("spark.sql.shuffle.partitions", "3"); //data stream from kafka
Dataset<Row> ds1 = sparkSession
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("subscribe", "mytopic")
.option("startingOffsets", "earliest")
.load(); //start the streaming query
sparkSession.udf().register("deserialize", (byte[] data) -> {
GenericRecord record = recordInjection.invert(data).get();
return RowFactory.create(record.get("str1").toString(), record.get("str2").toString(), record.get("int1")); }, DataTypes.createStructType(type.fields()));
ds1.printSchema();
Dataset<Row> ds2 = ds1
.select("value").as(Encoders.BINARY())
.selectExpr("deserialize(value) as rows")
.select("rows.*"); ds2.printSchema(); StreamingQuery query1 = ds2
.groupBy("str1")
.count()
.writeStream()
.queryName("Test query")
.outputMode("complete")
.format("console")
.start(); query1.awaitTermination(); }
}