最小值滤波 (C 语言实现)
遇到最小值滤波的问题,小白不知道。一个程序写了三天,最终今天傍晚出来了。
。。
非常easy的for循环。可是没有理解最小值滤波。怎么写都是错啊~
这是我见过做好的描写叙述,关于最小值滤波:
3*3的像素点阵,对于中心点做最小值滤波的话,它的值将从77变换到0
处理结果图:
我一直支持也坚持开源分享的原则。为大家更好的相互学习,给出源码
/******************************************************************
code writer : EOF
code date : 2014.08.07
e-mail : jasonleaster@gmail.com jasonleaster@163.com code purpose:
This demo is coded for mininum value filter.
If you find something wrong with my code, please touch me by e-mail.
Thank you. *******************************************************************/ #include "opencv2/highgui/highgui_c.h"
#include "opencv2/imgproc/imgproc_c.h" #include <stdio.h> /*------------------------------------------------------------------------------ This two Macro are used for debugging, if you are begginer with OpenCV,
it will help you to know and test what inside of the data struture in OpenCV -------------------------------------------------------------------------------*/ //#define RGB_TEST_DEBUG
//#define CHANNEL_TEST_DEBUG /* the offset of three channel RGB */
#define RED_BIT 2
#define GREEN_BIT 1
#define BLUE_BIT 0 #define SQUARE_LENGTH 15 int get_dark_imagine(IplImage* const img_origin,IplImage* const img_win_dark); int main(int argc,char* argv[])
{
char* win_name_bf = "Before Processing";
char* win_name_af = "After Processing"; CvSize size; IplImage* img_origin = cvLoadImage(argv[1],CV_LOAD_IMAGE_COLOR); size.height = img_origin->height;
size.width = img_origin->width; IplImage* img_win_dark = cvCreateImage(size,IPL_DEPTH_8U,1);//single channel get_dark_imagine(img_origin,img_win_dark); cvNamedWindow(win_name_bf,CV_WINDOW_AUTOSIZE);
//cvNamedWindow is a function which would help you to creat a window. cvShowImage(win_name_bf,img_origin);
//Obviously, show the picture that you inputed. cvNamedWindow(win_name_af,CV_WINDOW_AUTOSIZE);
//cvNamedWindow is a function which would help you to creat a window. cvShowImage(win_name_af,img_win_dark);
//Obviously, show the picture that you inputed. cvWaitKey(0);
//pause and let the user see the picture. cvReleaseImage(&img_origin);
cvReleaseImage(&img_win_dark);
//Finally, release the struture, otherwise, memory leak ! return 0;
} int get_dark_imagine(IplImage* const img_origin,IplImage* const img_win_dark)
{
/*
Varible description: @img_origin : A pointer which point to the original picture's IplImage-structure.
@img_win_dark: A pointer which point to the dark-window's IplImage-structure.
*/ if(img_origin == NULL || img_win_dark == NULL)
{
printf("Error! img_origin or img_win_dark is NULL\n"); return 1;
} int height_origin = img_origin->height ;
int width_origin = img_origin->width ;//the search band width. unsigned char * const ptr_array_origin = (unsigned char*)img_origin->imageData;
unsigned char * const ptr_array_win_dark = (unsigned char*)img_win_dark->imageData; unsigned char* ptr_header_origin = NULL; int row = 0;
int col = 0;
int square_row = 0;
int square_col = 0; int min = 0;
int T_min = 0;
int temp_R = 0;
int temp_G = 0;
int temp_B = 0;
int temp = 0; int search_win_start = SQUARE_LENGTH/2; /*
define two varible -- height_origin & width_origin for up band-width of the search-window
*/ int search_win_height_end = img_win_dark->height - SQUARE_LENGTH/2;
int search_win_width_end = img_win_dark->width - SQUARE_LENGTH/2; //initializition of the picture's data that 'ptr_array_win_dark' point to.
for(row = 0; row < height_origin; row++)
{
for(col = 0; col < width_origin ;col++)
{
*(ptr_array_win_dark + col + row*(img_win_dark->widthStep)) = 255; }
} //Mininum value filter
for(row = search_win_start; row < search_win_height_end; row++)
{ for(col = search_win_start; col < search_win_width_end ;col++)
{ ptr_header_origin = ptr_array_origin + (row)*(img_origin->widthStep) + (col)*3; temp_B = *(ptr_header_origin + BLUE_BIT );
temp_G = *(ptr_header_origin + GREEN_BIT );
temp_R = *(ptr_header_origin + RED_BIT ); min = (temp_G < temp_B) ? temp_G : temp_B;
min = (min < temp_R) ? min : temp_R; T_min = min; for(square_row = (row - search_win_start); square_row < (row + search_win_start + 1);square_row++)
{
for(square_col = (col - search_win_start); square_col < (col+search_win_start + 1);square_col++)
{
min = *(ptr_array_win_dark + square_col + square_row*(img_win_dark->widthStep)); if (min > T_min)
{
*(ptr_array_win_dark + square_col + square_row*(img_win_dark->widthStep)) = (T_min);
}
}
}
}
} return 0;
}
如有错误。欢迎交流指正
—— EOF
update : 2014.10.05
写了一个matlab版本号的最小滤波算法框架
Img_filted = dark_channel;
for row = 1 : height
for col = 1 : width min_value = dark_channel(row,col);
for patch_row = (row -floor(search_win_height/2)) : (row + floor(search_win_height/2))
for patch_col = (col - floor(search_win_width/2)) : (col + floor(search_win_width/2)) if patch_row > 0 && patch_col > 0 && patch_row <= height && patch_col <= width
if min_value < Img_filted(patch_row,patch_col)
Img_filted(patch_row,patch_col) = min_value;
end
end
end
end
end
end