【爬虫】4基础Python网络爬虫

【爬虫】4入门Python网络爬虫

我们已经学习了:

  • 使用Request自动爬取HTML页面,自动网络请求提交
  • 使用robot.txt,这是网络爬虫排除标准

接下来学习学习Beautiful Soup,来解析HTML页面

网络爬虫之提取

1、Beautiful Soup库入门

(1)Beautiful Soup库的安装

https://www.crummy.com/software/BeautifulSoup/
发现Anaconda没有自带这个库,我们安装一下。管理员身份运行命令行,输入:

pip install beautifulsoup4

结果:

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: beautifulsoup4 in e:\programdata\anaconda3\lib\site-packages (4.9.1)
Requirement already satisfied: soupsieve>1.2 in e:\programdata\anaconda3\lib\site-packages (from beautifulsoup4) (2.0.1)

结果说已经有这个库了?噢,我用的Python3.8的环境,换成Anaconda就好了。

那安装好之后测试一下,演示HTML页面地址为:
https://python123.io/ws/demo.html

同样,F12看一看页面源代码,也可以使用之前讲个Requests库,这是HTML 5.0格式代码:

<html><head><title>This is a python demo page</title></head>
<body>
<p class="title"><b>The demo python introduces several python courses.</b></p>
<p class="course">Python is a wonderful general-purpose programming language. You can learn Python from novice to professional by tracking the following courses:
<a href="http://www.icourse163.org/course/BIT-268001" class="py1" id="link1">Basic Python</a> and <a href="http://www.icourse163.org/course/BIT-1001870001" class="py2" id="link2">Advanced Python</a>.</p>
</body></html>

下面利用Beautiful Soup库看看效果,代码如下:

import requests
from bs4 import BeautifulSoup
r = requests.get('https://python123.io/ws/demo.html')
demo = r.text
soup = BeautifulSoup(demo, 'html.parser')
print(soup.prettify())

结果:

<html>
 <head>
  <title>
   This is a python demo page
  </title>
 </head>
 <body>
  <p class="title">
   <b>
    The demo python introduces several python courses.
   </b>
  </p>
  <p class="course">
   Python is a wonderful general-purpose programming language. You can learn Python from novice to professional by tracking the following courses:
   <a class="py1" href="http://www.icourse163.org/course/BIT-268001" id="link1">
    Basic Python
   </a>
   and
   <a class="py2" href="http://www.icourse163.org/course/BIT-1001870001" id="link2">
    Advanced Python
   </a>
   .
  </p>
 </body>
</html>

Process finished with exit code 0

可以发现格式和原来的一致了,针不戳
【爬虫】4基础Python网络爬虫

(2)Beautiful Soup库的基本元素

Beautiful Soup库是解析、遍历、维护“标签树”的功能库
【爬虫】4基础Python网络爬虫

<p>..</p> : 标签Tag

名称Name——成对出现
属性Attributes——0个或多个

Beautiful Soup库,也叫beautifulsoup4 或bs4 约定引用方式如下,即主要是用BeautifulSoup类

from bs4 import BeautifulSoup
import bs4

标签树对应着BeautifulSoup类,BeautifulSoup对应一个HTML/XML文档的全部内容

Beautiful Soup库解析器如下:

soup=BeautifulSoup('<html>data</html>','html.parser')

【爬虫】4基础Python网络爬虫
BeautifulSoup类的基本元素:
【爬虫】4基础Python网络爬虫

a.Tag标签

还是对之前的例子,执行以下代码:

import requests
from bs4 import BeautifulSoup
url = 'http://python123.io/ws/demo.html'
r = requests.get(url)
soup = BeautifulSoup(r.text, 'html.parser')
print(soup.title)		# This is Tag
print(soup.a)		# This is also a Tag

结果:

<title>This is a python demo page</title>
<a class="py1" href="http://www.icourse163.org/course/BIT-268001" id="link1">Basic Python</a>

任何存在于HTML语法中的标签都可以用soup.访问获得 当HTML文档中存在多个相同对应内容时,soup.返回第一个

b.Name

还是对之前的例子,执行以下代码:

import requests
from bs4 import BeautifulSoup
url = 'http://python123.io/ws/demo.html'
r = requests.get(url)
soup = BeautifulSoup(r.text, 'html.parser')
print(soup.a.name)
print(soup.a.parent.name)
print(soup.a.parent.parent.name)

结果:

a
p
body

每个都有自己的名字,通过.name获取,字符串类型

c.Attributes(属性)

对之前的例子,执行以下代码:

import requests
from bs4 import BeautifulSoup
url = 'http://python123.io/ws/demo.html'
r = requests.get(url)
soup = BeautifulSoup(r.text, 'html.parser')
tag = soup.a
print(tag.attrs)
print(tag.attrs['class'])
print(tag.attrs['href'])
print(type(tag.attrs))
print(type(tag))

结果如下:

{'href': 'http://www.icourse163.org/course/BIT-268001', 'class': ['py1'], 'id': 'link1'}
['py1']
http://www.icourse163.org/course/BIT-268001
<class 'dict'>
<class 'bs4.element.Tag'>

Process finished with exit code 0

一个<tag>可以有0或多个属性,字典类型

d.NavigableString

import requests
from bs4 import BeautifulSoup
url = 'http://python123.io/ws/demo.html'
r = requests.get(url)
soup = BeautifulSoup(r.text, 'html.parser')
tag = soup.a
print(tag)
print(tag.string)
print(soup.p)
print(soup.p.string)
print(type(soup.p.string))

结果如下:

<a class="py1" href="http://www.icourse163.org/course/BIT-268001" id="link1">Basic Python</a>
Basic Python
<p class="title"><b>The demo python introduces several python courses.</b></p>
The demo python introduces several python courses.
<class 'bs4.element.NavigableString'>

NavigableString可以跨越多个层次

e.Comment

from bs4 import BeautifulSoup

soup = BeautifulSoup("<b><!--This is a comment--></b><p>This is not a comment</p>", 'html.parser')
print(soup.prettify())
print(soup.b.string)
print(soup.comment)		# 注意一下
print(soup.p.string)
print(type(soup.b.string))
print(type(soup.p.string))

结果如下:

<b>
 <!--This is a comment-->
</b>
<p>
 This is not a comment
</p>
This is a comment
None
This is not a comment
<class 'bs4.element.Comment'>
<class 'bs4.element.NavigableString'>

Comment是一种特殊类型

可以总结一下,HTML就由以上五种元素构成。
【爬虫】4基础Python网络爬虫

(3)基于bs4库的HTML内容遍历方法

再次回忆一下之前的HTML基本格式:
【爬虫】4基础Python网络爬虫
<>…</>构成了所属关系,形成了标签的树形结构,如下所示:
【爬虫】4基础Python网络爬虫
【爬虫】4基础Python网络爬虫

a.标签树的下行遍历

【爬虫】4基础Python网络爬虫
标签树的下行遍历示意代码如下所示:

import requests
from bs4 import BeautifulSoup
url = 'http://python123.io/ws/demo.html'
demo = requests.get(url)
soup = BeautifulSoup(demo.text, 'html.parser')
print(soup.head)
print(soup.head.contents)
print(soup.body.contents)
print(len(soup.body.contents))
print(soup.body.contents[0])

结果如下:

<head><title>This is a python demo page</title></head>
[<title>This is a python demo page</title>]
['\n', <p class="title"><b>The demo python introduces several python courses.</b></p>, '\n', <p class="course">Python is a wonderful general-purpose programming language. You can learn Python from novice to professional by tracking the following courses:
<a class="py1" href="http://www.icourse163.org/course/BIT-268001" id="link1">Basic Python</a> and <a class="py2" href="http://www.icourse163.org/course/BIT-1001870001" id="link2">Advanced Python</a>.</p>, '\n']
5

标签树的下行遍历:

for child in soup.body.children: 
	print(child)		# 遍历儿子节点
for child in soup.body.descendants: 
	print(child)		# 遍历子孙节点

b.标签树的上行遍历

【爬虫】4基础Python网络爬虫
标签树的上行遍历示意代码如下所示:

import requests
from bs4 import BeautifulSoup
url = 'http://python123.io/ws/demo.html'
demo = requests.get(url)
soup = BeautifulSoup(demo.text, 'html.parser')
print(soup.title.parent)
print(soup.title.parents)
print(soup.html)
print(soup.html.parent)		# 和上面一样的
print(soup.parent)		# 空

结果如下所示:

<head><title>This is a python demo page</title></head>
<generator object PageElement.parents at 0x00000268E70CCE40>
<html><head><title>This is a python demo page</title></head>
<body>
<p class="title"><b>The demo python introduces several python courses.</b></p>
<p class="course">Python is a wonderful general-purpose programming language. You can learn Python from novice to professional by tracking the following courses:
<a class="py1" href="http://www.icourse163.org/course/BIT-268001" id="link1">Basic Python</a> and <a class="py2" href="http://www.icourse163.org/course/BIT-1001870001" id="link2">Advanced Python</a>.</p>
</body></html>
<html><head><title>This is a python demo page</title></head>
<body>
<p class="title"><b>The demo python introduces several python courses.</b></p>
<p class="course">Python is a wonderful general-purpose programming language. You can learn Python from novice to professional by tracking the following courses:
<a class="py1" href="http://www.icourse163.org/course/BIT-268001" id="link1">Basic Python</a> and <a class="py2" href="http://www.icourse163.org/course/BIT-1001870001" id="link2">Advanced Python</a>.</p>
</body></html>
None

典型标签树的上行遍历代码如下所示:

import requests
from bs4 import BeautifulSoup
url = 'http://python123.io/ws/demo.html'
demo = requests.get(url)
soup = BeautifulSoup(demo.text, 'html.parser')
for parent in soup.a.parents:
    if parent is None:
        print(parent)
    else:
        print(parent.name)

结果如下所示:

p
body
html
[document]

遍历所有先辈节点,包括soup本身,所以要区别判断

c.标签树的平行遍历

【爬虫】4基础Python网络爬虫
sibling——n.兄;弟;姐;妹;网络兄弟;兄弟姐妹;同胞
【爬虫】4基础Python网络爬虫
平行遍历代码如下:

import requests
from bs4 import BeautifulSoup
url = 'http://python123.io/ws/demo.html'
demo = requests.get(url)
soup = BeautifulSoup(demo.text, 'html.parser')
print(soup.prettify())
print(soup.a.next_sibling.next_sibling)
print(soup.a.previous_sibling.previous_sibling)
print(soup.a.next_sibling)
print(soup.a.previous_sibling)
print(soup.a.parent)

结果如下:

<html>
 <head>
  <title>
   This is a python demo page
  </title>
 </head>
 <body>
  <p class="title">
   <b>
    The demo python introduces several python courses.
   </b>
  </p>
  <p class="course">
   Python is a wonderful general-purpose programming language. You can learn Python from novice to professional by tracking the following courses:
   <a class="py1" href="http://www.icourse163.org/course/BIT-268001" id="link1">
    Basic Python
   </a>
   and
   <a class="py2" href="http://www.icourse163.org/course/BIT-1001870001" id="link2">
    Advanced Python
   </a>
   .
  </p>
 </body>
</html>
<a class="py2" href="http://www.icourse163.org/course/BIT-1001870001" id="link2">Advanced Python</a>
None
 and 
Python is a wonderful general-purpose programming language. You can learn Python from novice to professional by tracking the following courses:

<p class="course">Python is a wonderful general-purpose programming language. You can learn Python from novice to professional by tracking the following courses:
<a class="py1" href="http://www.icourse163.org/course/BIT-268001" id="link1">Basic Python</a> and <a class="py2" href="http://www.icourse163.org/course/BIT-1001870001" id="link2">Advanced Python</a>.</p>

标签树的平行遍历:

for sibling in soup.a.next_sibling: 
	print(sibling)		# 遍历后续节点
for sibling in soup.a.previous_sibling: 
	print(sibling)		# 遍历前续节点

(4)基于bs4库的HTML格式输出

a.bs4库的prettify()方法

让HTML内容更加“友好”的显示——bs4库的prettify()方法

  • prettify()为HTML文本<>及其内容增加更加’\n’
  • .prettify()可用于标签,方法:<tag>.prettify()

b.bs4库的编码

bs4库将任何HTML输入都变成utf‐8编码 Python 3.x默认支持编码是utf‐8,解析无障碍

2、信息标记与提取方法

(1)信息标记的三种形式

  • 一个信息——‘北京理工大学’
  • 一组信息——‘北京市海淀区中关村’ ‘首批985高校’‘中国*创办的第一所理工科大学’‘首批211高校’‘工业和信息化部’1940’第一辆轻型坦克’……
  • 信息的标记——‘name’,‘北京理工大学’ ‘addr’,‘北京市海淀区中关村’

为什么要标记?

  • 标记后的信息可形成信息组织结构,增加了信息维度 ;
  • 标记的结构与信息一样具有重要价值
  • 标记后的信息可用于通信、存储或展示
  • 标记后的信息更利于程序理解和运用

HTML的信息标记包括——文本 声音 图像 视频,其中声音 图像 视频称为超文本,HTML是WWW(World Wide Web)的信息组织方式

HTML通过预定义的<>…</>标签形式组织不同类型的信息

信息标记有哪些种类呢?

  • XML(eXtensibleMarkup Language)
  • JSON(JavsScript Object Notation)
  • YAML(YAML Ain’tMarkup Language)

a.XML

可扩展标记语言
【爬虫】4基础Python网络爬虫
【爬虫】4基础Python网络爬虫

<name> … </name> 
<name /> 
<!‐‐‐‐>

b.JSON

【爬虫】4基础Python网络爬虫
【爬虫】4基础Python网络爬虫
【爬虫】4基础Python网络爬虫

“key” :“value” 
“key” :[“value1”,“value2”] 
“key” : {“subkey” :“subvalue”}

C.YAML

【爬虫】4基础Python网络爬虫
缩进表示所属关系:
【爬虫】4基础Python网络爬虫
表达并列关系:
【爬虫】4基础Python网络爬虫
| 表达整块数据 # 表示注释
【爬虫】4基础Python网络爬虫

key :value 
key :#Comment 
‐value1 
‐value2  
key :  
	subkey:subvalue 

(2)三种信息标记形式的比较

XML实例:

<person> 
	<firstName>Tian</firstName> 
	<lastName>Song</lastName> 
	<address>
		 <streetAddr>中关村南大街5号</streetAddr>
	 	 <city>北京市</city> 
	 	 <zipcode>100081</zipcode>
	</address>
	<prof>Computer System</prof><prof>Security</prof> 
 </person>

JSON实例:

{
“firstName” :“Tian”, 
“lastName” :“Song”,
 “address” : {
  				“streetAddr” :“中关村南大街5号”, 
  				“city” :“北京市”, 
  				“zipcode” :“100081” 
  				} ,
 “prof” 		:[“Computer System” ,“Security” ]
}

YAML实例:

firstName:Tian 
lastName:Song 
address : 
	streetAddr:中关村南大街5号 
	city :北京市 
	zipcode:100081 
	prof : 
‐Computer System 
‐Security

可以发现:

XML 最早的通用信息标记语言,可扩展性好,但繁琐,Internet上的信息交互与传递
JSON 信息有类型,适合程序处理(js),较XML简洁,移动应用云端和节点的信息通信,无注释
YAML 信息无类型,文本信息比例最高,可读性好,各类系统的配置文件,有注释易读

(3)信息提取的一般方法

信息提取:从标记后的信息中提取所关注的内容(标记, 信息),XML JSON YAML

  • 法I:完整解析信息的标记形式,再提取关键信息
    需要标记解析器,例如:bs4库的标签树遍历。
    优点:信息解析准确
    缺点:提取过程繁琐,速度慢
  • 法II:无视标记形式,直接搜索关键信息 。对信息的文本查找函数即可
    优点:提取过程简洁,速度较快
    缺点:提取结果准确性与信息内容相关
  • 结合形式解析与搜索方法,提取关键信息。需要标记解析器及文本查找函数

实例:提取HTML中所有URL链接
思路:1) 搜索到所有以下标签

<a>

2)解析标签格式,提取href后的链接内容

from bs4 import BeautifulSoup
import requests
url = 'http://python123.io/ws/demo.html'
r = requests.get(url,timeout=30)
demo = r.text
soup = BeautifulSoup(demo,'html.parser')
for link in soup.find_all('a'):
    print(link.get('href'))

结果如下所示:

http://www.icourse163.org/course/BIT-268001
http://www.icourse163.org/course/BIT-1001870001

(4)基于bs4库的HTML内容查找方法

<>.find_all(name,attrs,recursive, string, **kwargs)

返回一个列表类型,存储查找的结果

  • name
    对标签名称的检索字符串
from bs4 import BeautifulSoup
import requests
url = 'http://python123.io/ws/demo.html'
r = requests.get(url,timeout=30)
demo = r.text
soup = BeautifulSoup(demo,'html.parser')
print(soup.find_all('a'))
print(soup.find_all(['a','b']))

结果如下所示:

[<a class="py1" href="http://www.icourse163.org/course/BIT-268001" id="link1">Basic Python</a>, <a class="py2" href="http://www.icourse163.org/course/BIT-1001870001" id="link2">Advanced Python</a>]
[<b>The demo python introduces several python courses.</b>, <a class="py1" href="http://www.icourse163.org/course/BIT-268001" id="link1">Basic Python</a>, <a class="py2" href="http://www.icourse163.org/course/BIT-1001870001" id="link2">Advanced Python</a>]

【爬虫】4基础Python网络爬虫
re.compile是什么?

  • attrs
    对标签属性值的检索字符串,可标注属性检索
    【爬虫】4基础Python网络爬虫
    【爬虫】4基础Python网络爬虫
  • recursive
    是否对子孙全部检索,默认True
    【爬虫】4基础Python网络爬虫
  • string
    <>…</>中字符串区域的检索字符串
    【爬虫】4基础Python网络爬虫
<tag>(..) 	等价于	<tag>.find_all(..) 
soup(..) 	等价于	soup.find_all(..)

扩展方法
【爬虫】4基础Python网络爬虫

上一篇:记录2-在mac上安装ubuntu 16.04 LTS


下一篇:beautifulsoup学习笔记