Elasticsearch由浅入深(八)搜索引擎:mapping、精确匹配与全文搜索、分词器、mapping总结

下面先简单描述一下mapping是什么?

自动或手动为index中的type建立的一种数据结构和相关配置,简称为mapping
dynamic mapping,自动为我们建立index,创建type,以及type对应的mapping,mapping中包含了每个field对应的数据类型,以及如何分词等设置

当我们插入几条数据,让ES自动为我们建立一个索引

PUT /website/article/1
{
  "post_date": "2019-08-21",
  "title": "my first article",
  "content": "this is my first article in this website",
  "author_id": 11400
}

PUT /website/article/2
{
  "post_date": "2019-08-22",
  "title": "my second article",
  "content": "this is my second article in this website",
  "author_id": 11400
}

PUT /website/article/3
{
  "post_date": "2019-08-23",
  "title": "my third article",
  "content": "this is my third article in this website",
  "author_id": 11400
}

查看mapping

GET /website/_mapping

{
  "website": {
    "mappings": {
      "article": {
        "properties": {
          "author_id": {
            "type": "long"
          },
          "content": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "post_date": {
            "type": "date"
          },
          "title": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          }
        }
      }
    }
  }
}

上面是插入数据自动生成的mapping,还有手动生成的mapping。这种自动或手动为index中的type建立的一种数据结构和相关配置,称为mapping。

尝试各种搜索

GET /website/article/_search?q=2019            //3条结果             
GET /website/article/_search?q=2019-08-21            //3条结果
GET /website/article/_search?q=post_date:2019-08-21       //1条结果
GET /website/article/_search?q=post_date:2019         //0条结果

搜索结果为什么不一致,因为es自动建立mapping的时候,设置了不同的field不同的data type。不同的data type的分词、搜索等行为是不一样的。所以出现了_all field和post_date field的搜索表现完全不一样。
下面是手动创建的mapping。

Elasticsearch由浅入深(八)搜索引擎:mapping、精确匹配与全文搜索、分词器、mapping总结
PUT /test_mapping
{
  "mappings" : {
    "properties" : {
      "author_id" : {
        "type" : "long"
      },
      "content" : {
        "type" : "text",
        "fields" : {
          "keyword" : {
            "type" : "keyword",
            "ignore_above" : 256
          }
        }
      },
      "post_date" : {
        "type" : "date"
      },
      "title" : {
        "type" : "text",
        "fields" : {
          "keyword" : {
            "type" : "keyword",
            "ignore_above" : 256
          }
        }
      }
    }
  }
}
View Code

精确匹配与全文搜索的对比分析

exact value

也就是某个field必须全部匹配才能返回相应的document
示例:

GET /website/article/_search?q=post_date:2019-08-21       //1条结果
GET /website/article/_search?q=post_date:2019         //0条结果

exact value,搜索的时候,必须输入2019-08-21,才能搜索出来
如果你输入一个21,是搜索不出来的

full text

full text与exact value不一样,不是说单纯的只是匹配完整的一个值,而是可以对值进行拆分词语后(分词)进行匹配,也可以通过缩写、时态、大小写、同义词等进行匹配。
示例:

GET /website/article/_search?q=2019            //3条结果             
GET /website/article/_search?q=2019-08-21            //3条结果

 

倒排索引核心原理

下面演示一下倒排索引简单建立的过程,当然实际中倒排索引的建立过程会非常的复杂。
doc1: I really liked my small dogs, and I think my mom also liked them.
doc2: He never liked any dogs, so I hope that my mom will not expect me to liked him.

分词,初步的倒排索引的建立

word    doc1    doc2
I        *        *
really   *
liked    *        *
my       *        *
small    *
dogs     *
and      *
think    *
mom      *        *
also     *        
them     *
He                *
never             *
any               *
so                *
hope              *
that              *
will              *
not               *
expect            *
me                *
to                *
him               *

搜索 mother like little dog, 不会有任何结果
mother
like 
little
dog
这肯定不是我们想要的结果。比如mother和mom其实根本就没有区别。但是却检索不到。但是做下测试发现ES是可以查到的。实际上ES在建立倒排索引的时候,还会执行一个操作,就是会对拆分的各个单词进行相应的处理,以提升后面搜索的时候能够搜索到相关联的文档的概率。像时态的转换,单复数的转换,同义词的转换,大小写的转换。这个过程称为正则化(normalization)
mother-> mom
liked -> like
small -> little
dogs -> dog
这样重新建立倒排索引:

word    doc1    doc2
I        *        *
really   *
like     *        *
my       *        *
little   *
dog      *
and      *
think    *
mom      *        *
also     *        
them     *
He                *
never             *
any               *
so                *
hope              *
that              *
will              *
not               *
expect            *
me                *
to                *
him               *

查询:mother like little dog 分词正则化
mother -> mom
like -> like
little -> little
dog -> dog
doc1和doc2都会搜索出来
doc1:I really liked my small dogs, and I think my mom also liked them.
doc2:He never liked any dogs, so I hope that my mom will not expect me to liked him.

分词器

切分词语,normalization(提升recall召回率)

给你一段句子,然后将这段句子拆分成一个一个的单个的单词,同时对每个单词进行normalization(时态转换,单复数转换),分瓷器
recall,召回率:搜索的时候,增加能够搜索到的结果的数量

  • character filter:在一段文本进行分词之前,先进行预处理,比如说最常见的就是,过滤html标签(<span>hello<span> --> hello),& --> and(I&you --> I and you)
  • tokenizer:分词,hello you and me --> hello, you, and, me
  • token filter:lowercase,stop word,synonymom,dogs --> dog,liked --> like,Tom --> tom,a/the/an --> 干掉,mother --> mom,small --> little

一个分词器,很重要,将一段文本进行各种处理,最后处理好的结果才会拿去建立倒排索引

内置分词器的介绍:

待分词:Set the shape to semi-transparent by calling set_trans(5)

standard analyzerset, the, shape, to, semi, transparent, by, calling, set_trans, 5(默认的是standard)
simple analyzerset, the, shape, to, semi, transparent, by, calling, set, trans
whitespace analyzer:Set, the, shape, to, semi-transparent, by, calling, set_trans(5)
language analyzer(特定的语言的分词器,比如说,english,英语分词器):set, shape, semi, transpar, call, set_tran, 5

mapping引入案例遗留问题大揭秘

GET /_search?q=2019

搜索的是_all field,document所有的field都会拼接成一个大串,进行分词

2019-01-02 my second article this is my second article in this website 11400

        doc1        doc2        doc3
2019      *          *           *
01        *         
02                   *
03                               *

_all,2017,自然会搜索到3个docuemnt

GET /_search?q=post_date:2019-01-01

date,会作为exact value去建立索引

             doc1        doc2        doc3
2017-01-01    *        
2017-01-02                 *         
2017-01-03                             *

测试分词器

语法:

GET /_analyze
{
  "analyzer": "standard",
  "text": "Text to analyze"
}
{
  "tokens": [
    {
      "token": "text",
      "start_offset": 0,
      "end_offset": 4,
      "type": "<ALPHANUM>",
      "position": 0
    },
    {
      "token": "to",
      "start_offset": 5,
      "end_offset": 7,
      "type": "<ALPHANUM>",
      "position": 1
    },
    {
      "token": "analyze",
      "start_offset": 8,
      "end_offset": 15,
      "type": "<ALPHANUM>",
      "position": 2
    }
  ]
}

对mapping进一步总结

  1. 往ES里面直接插入数据,ES会自动建立索引,同时建立type以及对应的mapping
  2. mapping中自动定义了每个fieldd的数据类型
  3. 不同的数据类型(比如说text和date),可能有的是exact value,有的是full text
  4. exact value,在建立倒排索引的时候,分词的时候,都是将整个值一起作为关键字建立到倒排索引中;full text会经历各种各样的处理,分词,normalization(时态转换,同义词转换,大小写转换),才会建立到倒排索引中
  5. 在搜索的时候,exact value和full text类型就决定了,对exact value和full text field进行搜索的行为也是不一样的,会跟建立倒排索引的行为保持一致;比如说exact value搜索的时候,就是直接按照整个值进行匹配,full text也会进行分词和正则化normalization再去倒排索引中去搜索。
  6. 可以用 ES的dynamic mapping,让其自动建立mapping,包括自动设置数据类型;也可以提前手动创建index和type的mapping,自己对各个field进行设置,包括数据类型,包括索引行为,包括分析器等等。

mapping本质上就是index的type的元数据,决定了数据类型,建立倒排索引的行为,还有进行搜索的行为。

mapping核心数据类型以及dynamic mapping

  • 核心数据类型
    string text:字符串类型
    byte:字节类型
    short:短整型
    integer:整型
    long:长整型
    float:浮点型
    boolean:布尔类型
    date:时间类型

    当然还有一些高级类型,像数组,对象object,但其底层都是text字符串类型

  • dynamic mapping
    true or false -> boolean
    123 -> long
    123.45 -> float
    2017-01-01 -> date
    "hello world" -> string text

     

  • 查看mapping

    语法:
    GET /{index}/_mapping
    GET /{index}/_mapping/{type}

手动建立和修改mapping以及定制string类型是否分词

注意:只能创建index时手动建立mapping,或者新增field mapping,但是不能update field mapping。

  • "analyzer": "standard":自动分词
  • date:日期
  • keyword:不分词
# 创建索引
PUT /website
{
  "mappings": {
    "properties": {
      "author_id": {
        "type": "long"
      },
      "title": {
        "type": "text",
        "analyzer": "standard"
      },
      "content": {
        "type": "text"
      },
      "post_date": {
        "type": "date"
      },
      "publisher_id": {
        "type": "keyword"
      }
    }
  }
}


#修改字段的mapping
PUT /website
{
  "mappings": {
    "properties": {
      "author_id": {
        "type": "text"
      }
    }
  }
}

{
  "error": {
    "root_cause": [
      {
        "type": "resource_already_exists_exception",
        "reason": "index [website/5xLohnJITHqCwRYInmBFmA] already exists",
        "index_uuid": "5xLohnJITHqCwRYInmBFmA",
        "index": "website"
      }
    ],
    "type": "resource_already_exists_exception",
    "reason": "index [website/5xLohnJITHqCwRYInmBFmA] already exists",
    "index_uuid": "5xLohnJITHqCwRYInmBFmA",
    "index": "website"
  },
  "status": 400
}


#增加mapping的字段
PUT /website/_mapping
{
  "properties": {
    "new_field": {
      "type": "text"
    }
  }
}

{
  "acknowledged" : true
}

mapping复杂类型y以及object类型数据底层结构

  1. multivalue field
    {
        "tags": ["tag1", "tag2"]
    }

    建立索引时与string是一样的,数据类型不能混

  2. empty field
    null,[],[null]
  3. object field
    初始化数据:
    PUT /company/employee/1
    {
      "address": {
        "country": "china",
        "province": "guangdong",
        "city": "guangzhou"
      },
      "name": "jack",
      "age": 27,
      "join_date": "2017-01-01"
    }

    查看mapping

    GET /company/_mapping/employee
    Elasticsearch由浅入深(八)搜索引擎:mapping、精确匹配与全文搜索、分词器、mapping总结
    {
      "company": {
        "mappings": {
          "employee": {
            "properties": {
              "address": {
                "properties": {
                  "city": {
                    "type": "text",
                    "fields": {
                      "keyword": {
                        "type": "keyword",
                        "ignore_above": 256
                      }
                    }
                  },
                  "country": {
                    "type": "text",
                    "fields": {
                      "keyword": {
                        "type": "keyword",
                        "ignore_above": 256
                      }
                    }
                  },
                  "province": {
                    "type": "text",
                    "fields": {
                      "keyword": {
                        "type": "keyword",
                        "ignore_above": 256
                      }
                    }
                  }
                }
              },
              "age": {
                "type": "long"
              },
              "join_date": {
                "type": "date"
              },
              "name": {
                "type": "text",
                "fields": {
                  "keyword": {
                    "type": "keyword",
                    "ignore_above": 256
                  }
                }
              }
            }
          }
        }
      }
    }
    View Code

    object field底层解析

    {
      "address": {
        "country": "china",
        "province": "guangdong",
        "city": "guangzhou"
      },
      "name": "jack",
      "age": 27,
      "join_date": "2017-01-01"
    }

    ↓↓↓↓

    {
        "name":            [jack],
        "age":          [27],
        "join_date":      [2017-01-01],
        "address.country":         [china],
        "address.province":   [guangdong],
        "address.city":  [guangzhou]
    }
    {
        "authors": [
            { "age": 26, "name": "Jack White"},
            { "age": 55, "name": "Tom Jones"},
            { "age": 39, "name": "Kitty Smith"}
        ]
    }

    ↓↓↓↓

    {
        "authors.age":    [26, 55, 39],
        "authors.name":   [jack, white, tom, jones, kitty, smith]
    }

 

Elasticsearch由浅入深(八)搜索引擎:mapping、精确匹配与全文搜索、分词器、mapping总结

上一篇:Math.min() Math.max() Math.min().apply() Math.max() .apply()该如何使用???


下一篇:正则表达式之邮箱、手机号码、电话号码,url地址