Description
Solution
无旋\(treap\) (\(fhq-treap\))
这道题有点小变化。
对于 \(insert\) 操作,就按花的价格分裂。判断是否有当前要插入的花的价格,如果有就直接合并回去,如果没有,就把当前花插入进去。
对于删除操作,我们就删除点 1,或点 tot。(显然一个最大,一个最小,删哪个根据题意)
这时我们要再写一个分裂函数,按子树大小分裂,然后不用合并了,相当于删除了,具体看代码吧。
注意:按子树大小分裂时,子树的根有点变化。
Code
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#define ls(x) t[x].ch[0]
#define rs(x) t[x].ch[1]
#define ll long long
using namespace std;
const ll N = 1e5 + 10;
struct Tree{
ll ch[2], siz, val, wei, cost;
}t[N];
ll n, m, tot, root;
ll a, b, c;
ll ans1, ans2;
inline void pushup(ll x){
t[x].siz = t[ls(x)].siz + t[rs(x)].siz + 1;
}
inline void split(ll x, ll k, ll &a, ll &b){
if(!x){
a = b = 0;
return;
}
if(t[ls(x)].siz >= k){
b = x;
split(ls(x), k, a, ls(x));
pushup(x);
}else{
a = x;
split(rs(x), k - t[ls(x)].siz - 1, rs(x), b);
pushup(x);
}
}
inline void split2(ll x, ll k, ll &a, ll &b){
if(!x){
a = b = 0;
return;
}
if(t[x].cost <= k){
a = x;
split2(rs(x), k, rs(x), b);
}else{
b = x;
split2(ls(x), k, a, ls(x));
}
pushup(x);
}
inline ll newnode(ll val, ll cost){
t[++tot].val = val, t[tot].cost = cost;
t[tot].siz = 1, t[tot].wei = rand();
return tot;
}
inline ll merge(ll x, ll y){
if(!x || !y) return x + y;
if(t[x].wei < t[y].wei){
rs(x) = merge(rs(x), y);
pushup(x);
return x;
}else{
ls(y) = merge(x, ls(y));
pushup(y);
return y;
}
}
inline void insert(ll w, ll cost){
split2(root, cost, a, b);
split2(a, cost - 1, a, c);
if(t[c].siz) root = merge(a, merge(c, b));
else root = merge(a, merge(newnode(w, cost), b));
}
void dfs(ll x){
if(!x) return;
ans1 += t[x].val;
ans2 += t[x].cost;
dfs(ls(x)), dfs(rs(x));
}
signed main(){
ll op, w, cost;
while(scanf("%lld", &op)){
if(op == -1) break;
if(op == 1) {
scanf("%lld%lld", &w, &cost);
insert(w, cost);
}
if(op == 2) split(root, t[root].siz - 1, root, a);
if(op == 3) split(root, 1, a, root);
}
dfs(root);
printf("%lld %lld\n", ans1, ans2);
return 0;
}