stm32定时器

STM32F4 的通用定时器包含一个 16 位或 32 位自动重载计数器(CNT),该计数器由可编程预分频器(PSC) 驱动。 STM32F4 的通用定时器可以被用于:测量输入信号的脉冲长度(输入
捕获)或者产生输出波形(输出比较和 PWM)等。 使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。 STM32F4 的每个通用定时器都
是完全独立的,没有互相共享的任何资源。

STM3 的通用 TIMx (TIM2~TIM5 TIM9~TIM14)定时器功能包括:

1)16 /32 (TIM2 TIM5)向上、向下、向上/向下自动装载计数器(TIMx_CNT),注意: TIM9~TIM14 只支持向上(递增)计数方式。
2)16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数为 165535 之间的任意数值。
34 个独立通道(TIMx_CH1~4TIM9~TIM14 最多 2 个通道),这些通道可以用来作为:
A.输入捕获
B.输出比较
CPWM 生成(边缘或中间对齐模式) ,注意: TIM9~TIM14 不支持中间对齐模式
D.单脉冲模式输出
4)可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。
5)如下事件发生时产生中断/DMATIM9~TIM14 不支持 DMA):
A.更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发)
B.触发事件(计数器启动、停止、初始化或者由内部/外部触发计数)
C.输入捕获
D.输出比较
E.支持针对定位的增量(正交)编码器和霍尔传感器电路(TIM9~TIM14 不支持)
F.触发输入作为外部时钟或者按周期的电流管理(TIM9~TIM14 不支持)

 

下面我们介绍一下与我们这章的实验密切相关的几个通用定时器的寄存器(以下均以 TIM2~TIM5 的寄存器介绍, TIM9~TIM14 的略有区别,具体请看《STM32F4xx 中文参考手册》 对应章节)。

stm32定时器

 

 

 stm32定时器

 

 

 stm32定时器

 

 

 stm32定时器

 

 

 stm32定时器

 

 

 这里,定时器的时钟来源有 4 个:
1) 内部时钟(CK_INT
2) 外部时钟模式 1:外部输入脚(TIx
3) 外部时钟模式 2:外部触发输入(ETR),仅适用于 TIM2TIM3TIM4
4) 内部触发输入(ITRx):使用 A 定时器作为 B 定时器的预分频器(A B 提供时钟)。
这些时钟,具体选择哪个可以通过 TIMx_SMCR 寄存器的相关位来设置。这里的 CK_INT时钟是从 APB1 倍频的来的,除非 APB1 的时钟分频数设置为 1(一般都不会是 1),否则通用
定时器 TIMx 的时钟是 APB1 时钟的 2 倍,当 APB1 的时钟不分频的时候,通用定时器 TIMx的时钟就等于 APB1 的时钟。这里还要注意的就是高级定时器以及 TIM9~TIM11 的时钟不是来
APB1,而是来自 APB2 的。

这里顺带介绍一下 TIMx_CNT 寄存器,该寄存器是定时器的计数器,该寄存器存储了当前定时器的计数值。

stm32定时器

接着我们介绍自动重装载寄存器(TIMx_ARR),该寄存器在物理上实际对应着 2 个寄存器。一个是程序员可以直接操作的,另外一个是程序员看不到的,这个看不到的寄存器在
STM32F4xx 中文参考手册》里面被叫做影子寄存器。事实上真正起作用的是影子寄存器。 根据 TIMx_CR1 寄存器中 APRE 位的设置: APRE=0 时,预装载寄存器的内容可以随时传送到影
子寄存器,此时 2 者是连通的;而 APRE=1 时,在每一次更新事件(UEV)时,才把预装载寄存器(ARR) 的内容传送到影子寄存器。

 

 

 最后,我们要介绍的寄存器是:状态寄存器(TIMx_SR)。该寄存器用来标记当前与定时器相关的各种事件/中断是否发生。该寄存器的各位描述如图 13.1.5 所示:

stm32定时器

 

 ***************************************************************定时器中断

1TIM3 时钟使能。
这里我们通过 APB1ENR 的第 1 位来设置 TIM3 的时钟,因为 Stm32_Clock_Init 函数里面把APB1的分频设置为4了,所以我们的TIM3时钟就是APB1时钟的2倍,等于系统时钟(84M)。
2) 设置 TIM3_ARR TIM3_PSC 的值。
通过这两个寄存器,我们来设置自动重装的值,以及分频系数。这两个参数加上时钟频率就决定了定时器的溢出时间。
3) 设置 TIM3_DIER 允许更新中断。因为我们要使用 TIM3 的更新中断,所以设置 DIER UIE 位为 1,使能更新中断。
4) 允许 TIM3 工作。
光配置好定时器还不行,没有开启定时器,照样不能用。我们在配置完后要开启定时器,通过 TIM3_CR1 CEN 位来设置。
5TIM3 中断分组设置。
在定时器配置完了之后,因为要产生中断,必不可少的要设置 NVIC 相关寄存器,以使能TIM3 中断。
6) 编写中断服务函数。
在最后,还是要编写定时器中断服务函数,通过该函数来处理定时器产生的相关中断。在中断产生后,通过状态寄存器的值来判断此次产生的中断属于什么类型。然后执行相关的操作,
我们这里使用的是更新(溢出)中断,所以在状态寄存器 SR 的最低位。在处理完中断之后应该向 TIM3_SR 的最低位写 0,来清除该中断标志。
通过以上几个步骤,我们就可以达到我们的目的了,使用通用定时器的更新中断,来控制DS1 的亮灭。

 

stm32定时器

上一篇:基础配置


下一篇:#Props 同步问题 #Vue2 Props 类双向绑定的实现 #怎么修改Props值