convolutional neural network (CNN)
using the PyTorch library
model
class CNN(nn.Module):
def __init__(self, in_channels=1, num_classes=10):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=8,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.conv2 = nn.Conv2d(
in_channels=8,
out_channels=16,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.fc1 = nn.Linear(16 * 7 * 7, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
nn.Conv2d() 计算公式
nn.MaxPool
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
#测试代码
model=CNN()
x= torch.randn(64,1,28,28)
print(model(x).shape)
exit()
model = CNN(in_channels=in_channels, num_classes=num_classes).to(device)
其他代码与全连接层网络一致