machine learning 之 多元线性回归

整理自Andrew Ng的machine learning课程 week2.

目录:

  • 多元线性回归 Multivariates linear regression /MLR
  • Gradient descent for MLR
  • Feature Scaling and Mean Normalization
  • Ensure gradient descent work correctly
  • Features and polynomial regression
  • Normal Equation
  • Vectorization

前提:

$x_{(j)}^{(i)}$:第i个训练样本的第j个特征的值;

$x^{(i)}$:第i个训练样本;

m:训练样本的数目;

n:特征的数目;

1、多元线性回归

具有多个特征变量的回归

比如,在房价预测问题中,特征变量有房子面积x1,房间数量x2等;

模型:

$h_\theta(x)=\theta_0+\theta_1x1+\theta_2x_2+...+\theta_nx_n$

为了方便,认为$x_0=1$(注意这是一个vector,$[x_0^{(1)} x_0^{(2)} ... x_0^{(n)}]=1$),这样的话x和theta就可以相互匹配,进行矩阵运算了;

对于一个training example而言:

$h_\theta(x)$

$=\theta_0+\theta_1x1+\theta_2x_2+...+\theta_nx_n$

=$\theta^Tx$

=$\begin{bmatrix} \theta_0 & \theta_1 & ... & \theta_n \end{bmatrix}  \begin{bmatrix} x_0\\  x_1\\ ...\\ x_n \end{bmatrix}$

对于所有的训练样本而言:

$X=\begin{bmatrix}  x_0^(1) & x_1^(1) & ...& x_n^(1)\\   x_0^(2) & ... &  ... & ...\\    ... & ... &  ... & ...\\  x_0^(m) & x_1^(m) & ...& x_n^(m) \end{bmatrix}  \qquad  \theta=\begin{bmatrix}  \theta_0\\  \theta_1\\   ...\\   \theta_n \end{bmatrix}$

X是design matrix,$h_\theta(x)=X\theta$

2、Gradient descent for MLR

损失函数:$J(\theta)=\frac{1}{2m} \sum_{i=1}^m(h_\theta(x^{(i)})-y_{(i)})^2 = \frac{1}{2m} (X\theta-y)^T (X\theta-y)$

GD更新准则:

$\theta_j:=\theta_j-\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_j$

详细的讲解见之前的博客

3、Feature Scaling and Mean Normalization

思想:确保特征的量级在统一尺度之下

为什么要做feature scaling?

如下图,当特征不在一个尺度之下时,优化时的等高线图相当于一个又长又细的椭圆,此时GD会走的特别曲折,要很久才可以找到最优解;

machine learning 之 多元线性回归

而当特征的尺度一致时,优化时的等高线图是接近一个正圆,GD就会很快的找到最优解;

machine learning 之 多元线性回归

如何做feature scaling?

$x=\frac{x}{max(x)-min(x)}$

这样可以保证x在0到1之间,一般而言,-1<x<1是比较标准的scaling尺度,但是并不是一定要在这个范围之内。

Mean Normalization

结合Feature Scaling :$x=\frac{x-\mu}{range(x)}$

$\mu$是x的均值,range(x)是最大值与最小值的范围,或者是标准差;

4、Ensure gradient descent work correctly

如何保证我们的Gradient descent是work correctly?可以画一个损失函数随迭代次数变化的图:

machine learning 之 多元线性回归

如果GD是做的对的话,那么J应该是下降的,在迭代一定次数后开始收敛。(迭代次数视问题而定,有可能是400,有可能是40,也有可能是4000)

那么怎样才是收敛呢?

在一次迭代中,J下降的十分慢,小于某个很小的阈值(如$10^-3$),但是实际上这个阈值的选择是十分困难的,建议通过J-iteration来调整;

学习率的选取

如果你的J是增大的,那么可能是因为学习率$\alpha$选取的太大了,可以调整$\alpha$;

如果J下降的十分缓慢,说明$\alpha$的选取太小了的,这会消耗很多时间达到收敛;

建议可以通过观察J-iteration图,逐步的调整$\alpha$(0.001,0.003,0.01,0.03,0.1,0.3,1,3.......);

5、Feature and Polynomial regression

Features

比如在房价预测问题中,若x1是房子的长,x2是房子的宽,此时若组合x1和x2就可以得到一个新的特征area=x1*x2;构造一个好的特征对模型是有帮助的;

Polynomial regression

同上思想,如当线性关系无法精确的拟合散点的话,那应当考虑一些非线性的函数,如quadratic、cubic和square root的关系:

$h_\theta(x)=\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3$

$=\theta_0+\theta_1(size)+\theta_1(size)^2+\theta_1(size)^3$

此时:

$x_1=size$

$x_2=size^2$

$x_3=size^3$

同时,在这个时候,Feature Scaling就显得特别重要了:

因为若size<10,则$size^2<100$,$size^3<1000$,

6、Normal Equation

在线性回归问题中,除了可以用GD求最优解,还可以用解析解之间求解,在线性代数中:

$\frac{\partial J}{\partial \theta}=0$是有解析解的:

$\theta=(X^TX)^-1X^Ty$

注意用这种方法求解时,就没必要进行Feature Scaling了;

那既然有解析解了,为什么还要使用Gradient descent呢?

Gradient Descent Normal Equation
需要进行迭代 无需迭代
需要设定学习率$\alpha$ 无需设定学习率$\alpha$
时间复杂度为O(kn2) 时间复杂度O(n3)(主要是求逆的复杂度)

由表中第3点,当数据的特征特别多(n=106)时,Normal Equation会耗费相当多的时间

而且,并非所有的优化问题都要解析解,很多复杂的机器学习问题是没有解析解的,此时我们还是需要使用Gradient Descent来求解

$X^TX$没有逆?

注意到解析解里面有个求逆运算,但是有些情况是没有逆的:

  • Redundant features(linearly dependent)

当两个特征是线性依赖的时候,比如size in feet2 和size in m2

  • Too many features(m<=n)

当特征太多了,多于训练样本的数目的时候;

如何解决这个问题?

删除一些特征,或者使用regularization;

注:在matlab/octave中,求逆有inv和pinv两种,而pinv就是在即使没有逆的时候也可以求出来一个逆;

7、Vectorization

  在求解一个线性回归问题的时候,无论是计算损失,还是更新参数($\theta$),都有很多的向量计算问题,对于这些计算问题,可以使用for循环去做,但是在matlab/octave,或者python或其他语言的数值计算包中,对向量的计算都进行了优化,如果使用向量计算而不是for循环的话,可以写更少的代码,并且计算更有效率。

  在上面的一些公式中,都做了vectorization的处理。(主要是计算损失和更新参数)

上一篇:zabbix3.x web设置手册(2)


下一篇:机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总