好久没写过博客了。。
大力推式子就行了:
\(E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}+\sum_{j>i}\frac{q_j}{(j-i)^2}\)
那么要转化成卷积的形式对吧,设\(f(i)=q_i,g(i)=\frac{1}{i^2}\)
\(E_i=\sum_{j<i}f(j)g(i-j)+\sum_{j>i}f(j)g(j-i)\)
直接NTT就行了。
#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
typedef std::complex<double> cp;
const double pi=acos(-1);
double q[100010];
int rev[1<<19];
cp A[1<<19],B[1<<19],omg[1<<19],inv[1<<19];
double ans[100010];
il vd fft(cp*A,int n,cp*omg){
for(int i=0;i<n;++i)if(rev[i]>i)std::swap(A[i],A[rev[i]]);
for(int o=1;o<n;o<<=1)
for(cp*p=A;p!=A+n;p+=o<<1)
for(int i=0;i<o;++i){
cp t=omg[n/(o<<1)*i]*p[i+o];
p[i+o]=p[i]-t,p[i]+=t;
}
}
int main(){
int n=gi();
for(int i=1;i<=n;++i)scanf("%lf",&q[i]);
int N=1,lg=0;while(N<(n+2)*2)N<<=1,++lg;
for(int i=0;i<N;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
for(int i=0;i<N;++i)omg[i]=cp(cos(2*pi*i/N),sin(2*pi*i/N)),inv[i]=conj(omg[i]);
for(int i=1;i<=n;++i)A[i]=1.0/i/i;
for(int i=1;i<=n;++i)B[i]=q[i];
fft(A,N,omg),fft(B,N,omg);
for(int i=0;i<N;++i)A[i]*=B[i];
fft(A,N,inv);
for(int i=0;i<N;++i)A[i]/=N;
for(int i=1;i<=n;++i)ans[i]=A[i].real();
memset(A,0,sizeof A);memset(B,0,sizeof B);
std::reverse(q+1,q+n+1);
for(int i=1;i<=n;++i)A[i]=1.0/i/i;
for(int i=1;i<=n;++i)B[i]=q[i];
fft(A,N,omg),fft(B,N,omg);
for(int i=0;i<N;++i)A[i]*=B[i];
fft(A,N,inv);
for(int i=0;i<N;++i)A[i]/=N;
for(int i=1;i<=n;++i)ans[n-i+1]-=A[i].real();
for(int i=1;i<=n;++i)printf("%.3lf\n",ans[i]);
return 0;
}