[LeetCode] 765. Couples Holding Hands

N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swap consists of choosing any two people, then they stand up and switch seats.

The people and seats are represented by an integer from 0 to 2N-1, the couples are numbered in order, the first couple being (0, 1), the second couple being (2, 3), and so on with the last couple being (2N-2, 2N-1).

The couples' initial seating is given by row[i] being the value of the person who is initially sitting in the i-th seat.

Example 1:

Input: row = [0, 2, 1, 3]
Output: 1
Explanation: We only need to swap the second (row[1]) and third (row[2]) person.

Example 2:

Input: row = [3, 2, 0, 1]
Output: 0
Explanation: All couples are already seated side by side.

Note:

  1. len(row) is even and in the range of [4, 60].
  2. row is guaranteed to be a permutation of 0...len(row)-1.

情侣牵手。

题意是给偶数个人,以数组表示。他们的下标是从0到2N - 1。其中(2N - 2, 2N - 1)是情侣。现在请你做swap操作,请问至少需要swap多少次,可以让所有情侣牵手。

这个题有两种思路,一种是贪心,一种是并查集union find。我这里先给出贪心的思路。同时建议可以先做一下41题,思路类似。

这个题贪心的做法跟桶排序类似,还是试着将每个坐标上放应该放的数字。过一下第一个例子,[0, 2, 1, 3]。第一个数字是0,那么第二个数字的判断就是看他是否是第一个数字0的配偶。判断配偶的方式是看当前这个nums[i + 1]是不是等于nums[i] ^ 1。这一点不容易想到。因为配偶的座位排序要求不是非常严格,比如0和1,既可以01这样坐,也可以10这样坐。但是位运算的这个特点就可以无视0和1的顺序,来判断两个相邻的数字是否互为配偶。如果想不到这个位运算的办法,那么就只能通过先判断当前index上数字的奇偶性来判断index + 1那个位置上的数字是否是配偶。贪心的做法为什么对呢?我这里引用一个discussion给的例子,并且稍加解释。

The proof is easy. Consider a simple example: 7 1 4 6 2 3 0 5. At first step we have two choice to match the first couple: swap 7 with 0, or swap 1 with 6. Then we get 0 1 4 6 2 3 7 5 or 7 6 4 1 2 3 0 5. Pay attention that the first couple doesn't count any more. For the later part it is composed of 4 X 2 3 Y 5 (X=6 Y=7 or X=1 Y=0). Since different couples are unrelated, we don't care X Y is 6 7 pair or 0 1 pair. They are equivalent! Thus it means our choice doesn't count.
Therefore, just follow the distinction and you will get it right!

首先,input是[7 1 4 6 2 3 0 5]。然后第一次swap可以swap7和0,或者swap1和6。第一次swap完了之后,数组长这样,

4 X 2 3 Y 5 (X=6 Y=7 or X=1 Y=0)

后面的swap只跟XY有关,跟已经被swap好的第一组数字无关了。所以也就无所谓先swap哪些数字了。

时间O(n)

空间O(n)

Java实现

 1 class Solution {
 2     public int minSwapsCouples(int[] row) {
 3         int count = 0;
 4         int[] pos = new int[row.length];
 5         for (int i = 0; i < pos.length; i++) {
 6             pos[row[i]] = i; //每个人对应的位置
 7         }
 8 
 9         for (int i = 0; i < pos.length; i += 2) {
10             // i号位置的情侣应该是谁
11             int pairPerson = (row[i] & 1) == 1 ? row[i] - 1 : row[i] + 1;
12             // 右边是情侣,直接继续处理下一个。
13             if (row[i + 1] == pairPerson) {
14                 continue;
15             }
16             int nextPerson = row[i + 1]; // 右边不是情侣,得到右边的人是谁
17             int changePos = pos[pairPerson]; // 得到情侣的位置在哪
18             row[changePos] = nextPerson; // 交换后,情侣位置坐上了右边的人nextPerson
19             pos[nextPerson] = changePos; // 交换后,右边人nextPerson的位置发生了改变,记录下来。
20             count++;
21         }
22         return count;
23     }
24 }

 

相关题目

41. First Missing Positive

LeetCode 题目总结

上一篇:更稳定的手势识别方法-基于手部骨架与关键点检测


下一篇:用Python画了一个钟