from operator import add, mul, sub
square = lambda x: x * x
identity = lambda x: x
triple = lambda x: 3 * x
increment = lambda x: x + 1
HW_SOURCE_FILE = __file__
Q1: Product
The summation(n, term) function from the higher-order functions lecture adds up term(1) + ... + term(n). Write a similar function called product that returns term(1) * ... * term(n).
def product(n, term):
"""Return the product of the first n terms in a sequence.
n -- a positive integer
term -- a function that takes one argument to produce the term
>>> product(3, identity) # 1 * 2 * 3
6
>>> product(5, identity) # 1 * 2 * 3 * 4 * 5
120
>>> product(3, square) # 1^2 * 2^2 * 3^2
36
>>> product(5, square) # 1^2 * 2^2 * 3^2 * 4^2 * 5^2
14400
>>> product(3, increment) # (1+1) * (2+1) * (3+1)
24
>>> product(3, triple) # 1*3 * 2*3 * 3*3
162
"""
"*** YOUR CODE HERE ***"
result = 1
for i in range(1, n+1):
result *= term(i)
return result
def square(x):
return x * x
Q2: Accumulate
Let's take a look at how summation and product are instances of a more general function called accumulate:
def accumulate(combiner, base, n, term):
"""Return the result of combining the first n terms in a sequence and base.
The terms to be combined are term(1), term(2), ..., term(n). combiner is a
two-argument commutative function.
>>> accumulate(add, 0, 5, identity) # 0 + 1 + 2 + 3 + 4 + 5
15
>>> accumulate(add, 11, 5, identity) # 11 + 1 + 2 + 3 + 4 + 5
26
>>> accumulate(add, 11, 0, identity) # 11
11
>>> accumulate(add, 11, 3, square) # 11 + 1^2 + 2^2 + 3^2
25
>>> accumulate(mul, 2, 3, square) # 2 * 1^2 * 2^2 * 3^2
72
>>> accumulate(lambda x, y: x + y + 1, 2, 3, square)
19
>>> accumulate(lambda x, y: 2 * (x + y), 2, 3, square)
58
>>> accumulate(lambda x, y: (x + y) % 17, 19, 20, square)
16
"""
"*** YOUR CODE HERE ***"
result = base
for i in range(1, n+1):
result = combiner(result, term(i))
return result
After implementing accumulate, show how summation and product can both be defined as simple calls to accumulate:
def summation_using_accumulate(n, term):
"""Returns the sum of term(1) + ... + term(n). The implementation
uses accumulate.
>>> summation_using_accumulate(5, square)
55
>>> summation_using_accumulate(5, triple)
45
>>> from construct_check import check
>>> # ban iteration and recursion
>>> check(HW_SOURCE_FILE, 'summation_using_accumulate',
... ['Recursion', 'For', 'While'])
True
"""
"*** YOUR CODE HERE ***"
return accumulate(add, 0, n, term)
def product_using_accumulate(n, term):
"""An implementation of product using accumulate.
>>> product_using_accumulate(4, square)
576
>>> product_using_accumulate(6, triple)
524880
>>> from construct_check import check
>>> # ban iteration and recursion
>>> check(HW_SOURCE_FILE, 'product_using_accumulate',
... ['Recursion', 'For', 'While'])
True
"""
"*** YOUR CODE HERE ***"
return accumulate(mul, 1, n, term)