设 $f:\bbR\to\bbR$ 二阶可微, 适合 $f(0)=1$, $f'(0)=0$, 并且 $$\bex f''(x)-5f'(x)+6f(x)\geq 0. \eex$$ 试证: $$\bex f(x)\geq 3e^{2x}-2e^{3x},\quad \forall\ x\in [0,\infty). \eex$$
相关文章
- 12-23[Everyday Mathematics]20150226
- 12-23论文阅读:Making Virtual Pancakes — Acquiring and Analyzing Data of Everyday Manipulation Tasks through I
- 12-23CBOW原理 运用CBOW模型,给出一个语句”i drink milk everyday“, 预测 ”milk“。假设第一次随机化初始矩阵和第二次随机化初始矩阵分别为:
- 12-23everyday
- 12-23[Everyday Mathematics]20150125
- 12-23[Everyday Mathematics]20150131
- 12-23[Everyday Mathematics]20150129
- 12-23论文阅读:On-line simultaneous learning and recognition of everyday activities from virtual reality perfo
- 12-23论文阅读:Simulation-based temporal projection of everyday robot object manipulation
- 12-23the design of everyday things