思维定势--AtCoder Regular Contest 092 D - Two Sequences

$n \leq 100000$的俩序列,数字范围$2^{28}$,问所有$a_i+b_j$的$n^2$个数字的异或和。

这种东西肯定是按位考虑嘛,从低位开始然后补上进位。比如说第一位俩串分别有$c$个$1$和$e$个$1$,$d$个$0$和$f$个$0$,然后这一位就是$c*f+e*d$个$1$,会进$c*e$个$1$给第二位。但这里没法解决连续进位的问题,因为连续进位必须去具体考察哪几个数字进了位,复杂度不对。

思维定势--考察某一位答案时从“模拟加法”“进位”的角度,无法从中跳出是不可能出解的。

那换个方法呗,可以看到某一位的答案是由不高于这一位的所有位决定的。假如现在在第$k$位,把$a$和$b$的所有数字取出最低的$k$位,然后可以发现,$2^k \leq a_i+b_j < 2^k*2$或$2^k*3 \leq a_i+b_j < 2^k*4$时,这一位会产生一个1。这俩式子移下项,发现只要把$b$排序就可以枚举$a$然后二分答案了。

这个故事告诉我们,当发现自己陷入思维瓶颈的时候,一定要往后退一步。

其实退一步胜这种思想不仅应用于OI,在我国古代智慧中国象棋中也有这种想法。《梦入神机》中就有记载一篇名为《退一步胜》的残局,引用如下,转侵删:

好不引用了刷题去。

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
//#include<queue>
//#include<time.h>
//#include<complex>
#include<algorithm>
#include<stdlib.h>
using namespace std; int n;
#define maxn 200011
int a[maxn],b[maxn],na[maxn],nb[maxn];
int main()
{
scanf("%d",&n); for (int i=;i<=n;i++) scanf("%d",&a[i]); for (int i=;i<=n;i++) scanf("%d",&b[i]);
int ans=;
for (int i=;i<=;i++)
{
for (int j=;j<=n;j++) na[j]=a[j]&((<<(i+))-),nb[j]=b[j]&((<<(i+))-);
sort(nb+,nb++n); int t1=<<i,t2=*t1,t3=*t1,t4=*t1;
int now=;
for (int j=;j<=n;j++)
{
now^=(lower_bound(nb+,nb++n,t2-na[j])-lower_bound(nb+,nb++n,t1-na[j]))&;
now^=(lower_bound(nb+,nb++n,t4-na[j])-lower_bound(nb+,nb++n,t3-na[j]))&;
}
ans|=now<<i;
}
printf("%d\n",ans);
return ;
}
上一篇:python模块路径


下一篇:【转载】Dom篇