Lintcode: Heapify && Summary: Heap

Given an integer array, heapify it into a min-heap array.
For a heap array A, A[0] is the root of heap, and for each A[i], A[i * 2 + 1] is the left child of A[i] and A[i * 2 + 2] is the right child of A[i].
Example
Given [3,2,1,4,5], return [1,2,3,4,5] or any legal heap array. Challenge
O(n) time complexity Clarification
What is heap? Heap is a data structure, which usually have three methods: push, pop and top. where "push" add a new element the heap, "pop" delete the minimum/maximum element in the heap, "top" return the minimum/maximum element. What is heapify?
Convert an unordered integer array into a heap array. If it is min-heap, for each element A[i], we will get A[i * 2 + 1] >= A[i] and A[i * 2 + 2] >= A[i]. What if there is a lot of solutions?
Return any of them.

Heap的介绍1介绍2,要注意complete tree和full tree的区别, Heap是complete tree;Heap里面 i 的 children分别是 i*2+1 和 i*2+2,i 的 parent是      (i-1)/2

Heapify的基本思路就是:Given an array of N values, a heap containing those values can be built by simply “sifting” each internal node down to its proper location:

1. start with the last internal node

2. swap the current internal node with its smaller child, if necessary

3. then follow the swapped node down

4. continue until all internal nodes are done

 public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
int start = A.length/2;
for (int i=start;i>=0;i--)
shiftDown(i, A);
} private void shiftDown(int ind, int[] A){
int size = A.length;
int left = ind*2+1;
int right = ind*2+2;
while (left<size || right<size){
int leftVal = (left<size) ? A[left] : Integer.MAX_VALUE;
int rightVal = (right<size) ? A[right] : Integer.MAX_VALUE;
int next = (leftVal<=rightVal) ? left : right;
if (A[ind]<A[next]) break;
else {
swap(A, ind,next);
ind = next;
left = ind*2+1;
right = ind*2+2;
}
}
} private void swap(int[] A, int x, int y){
int temp = A[x];
A[x] = A[y];
A[y] = temp;
}
}

注意第7行,start之所以从A.length/2开始,是因为要从Internal node开始,除开最后一行。其实可以写成start = (A.length - 1 - 1) / 2, 求最后一个index的parent index的基本做法。

17-18行的技巧,不存在就补齐一个很大的数,因为反正最终是求小的,这样省了很多行分情况讨论

下面给出Heap的 Summary, 转来的:implemented a Heap class that can specify min heap or max heap with insert, delete root and build heap functions.

Time Complexity分析:Binary Heap

Java PriorityQueue (Java Doc) time complexity for 1 operation

O(log n) time for the enqueing and dequeing methods (offer, poll, remove() and add). Note that this remove() is inherited, it's not remove(object). This retrieves and removes the head of this queue.

O(n) for the remove(Object) and contains(Object) methods

O(1) for the retrieval methods (peek, element, and size)

The insertion/poll of n elements should be O(n log n)

Build本来应该O(NlogN), 但是如果用巧妙办法:The optimal method starts by arbitrarily putting the elements on a binary tree, respecting the shape property (the tree could be represented by an array, see below). Then starting from the lowest level and moving upwards, shift the root of each subtree downward as in the deletion algorithm until the heap property is restored. 时间复杂度是 O(N)., 参看上面链接里面build a Heap部分证明

These time complexities seem all worst case (wiki), except for .add(). You are right to question the bounds as the Java Doc also states to the extension of this unbound structure:

The details of the growth policy are not specified

As they state in the Doc as well, the PriorityQueue is based on an array with a specific initial capacity. I would assume that the growth will cost O(n) time, which then would also be the worst case time complexity for .add().

To get a guaranteed O(n log n) time for adding n elements you may state the size of your n elements to omit extension of the container: PriorityQueue(int initialCapacity) 

Priority Queue work with Map.Entry

some syntax: everytime you change the Map.Entry, you should take it out and put it into PQ again in order for it to be sorted.

If you just change the value of the undelying Map.Entry, PQ won't sort by itself. Example: https://www.cnblogs.com/EdwardLiu/p/11738048.html

 class Heap{
private int[] nodes;
private int size;
private boolean isMaxHeap; public Heap(int capa, boolean isMax){
nodes = new int[capa];
size = 0;
isMaxHeap = isMax;
} //Build heap from given array.
public Heap(int[] A, boolean isMax){
nodes = new int[A.length];
size = A.length;
isMaxHeap = isMax;
for (int i=0;i<A.length;i++) nodes[i] = A[i];
int start = A.length/2;
for (int i=start;i>=0;i--)
shiftDown(i);
} //Assume A and nodes have the same length.
public void getNodesValue(int[] A){
for (int i=0;i<nodes.length;i++) A[i] = nodes[i];
} public boolean isEmpty(){
if (size==0) return true;
else return false;
} public int getHeapRootValue(){
//should throw exception when size==0;
return nodes[0];
} private void swap(int x, int y){
int temp = nodes[x];
nodes[x] = nodes[y];
nodes[y] = temp;
} public boolean insert(int val){
if (size==nodes.length) return false;
size++;
nodes[size-1]=val;
//check its father iteratively.
int cur = size-1;
int father = (cur-1)/2;
while (father>=0 && ((isMaxHeap && nodes[cur]>nodes[father]) || (!isMaxHeap && nodes[cur]<nodes[father]))){
swap(cur,father);
cur = father;
father = (cur-1)/2;
}
return true;
} private void shiftDown(int ind){
int left = (ind+1)*2-1;
int right = (ind+1)*2;
while (left<size || right<size){
if (isMaxHeap){
int leftVal = (left<size) ? nodes[left] : Integer.MIN_VALUE;
int rightVal = (right<size) ? nodes[right] : Integer.MIN_VALUE;
int next = (leftVal>=rightVal) ? left : right;
if (nodes[ind]>nodes[next]) break;
else {
swap(ind,next);
ind = next;
left = (ind+1)*2-1;
right = (ind+1)*2;
}
} else {
int leftVal = (left<size) ? nodes[left] : Integer.MAX_VALUE;
int rightVal = (right<size) ? nodes[right] : Integer.MAX_VALUE;
int next = (leftVal<=rightVal) ? left : right;
if (nodes[ind]<nodes[next]) break;
else {
swap(ind,next);
ind = next;
left = (ind+1)*2-1;
right = (ind+1)*2;
}
}
}
} public int popHeapRoot(){
//should throw exception, when heap is empty. int rootVal = nodes[0];
swap(0,size-1);
size--;
if (size>0) shiftDown(0);
return rootVal;
}
} public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
if (A.length==0) return; Heap minHeap = new Heap(A,false);
minHeap.getNodesValue(A);
}
}

经常有关Heap的问题比如:

k largest(or smallest) elements in an array
Write an efficient program for printing k largest elements in an array. Elements in array can be in any order.

常用的方法肯定有QuickSelect, 用Heap也有两种方法可解:

Method Use Max Heap
1) Build a Max Heap tree in O(n)
2) Use Extract Max k times to get k maximum elements from the Max Heap O(klogn)

这个Max Heap的size是O(N)

Time complexity: O(n + klogn)

推荐方法:

Method Use Min Heap

1) Build a Min Heap MH of the first k elements (arr[0] to arr[k-1]) of the given array. O(k)

2) For each element, after the kth element (arr[k] to arr[n-1]), compare it with root of MH.
  a) If the element is greater than the root then make it root and call heapifyfor MH
  b) Else ignore it.
// The step 2 is O((n-k)*logk)

3) Finally, MH has k largest elements and root of the MH is the kth largest element.

这个Min Heap的size是O(k)

Time Complexity: O(k + (n-k)Logk) without sorted output.

上一篇:[国嵌笔记][004][Linux快速体验]


下一篇:python 动态生成变量