一:冒泡法排序
//冒泡排序 注:从小到大排
//特点:效率低,实现简单
//思想:每一趟将待排序序列中最大元素移到最后,剩下的为新的待排序序列,重复上述步骤直到排完所有元素。
这只是冒泡排序的一种,当然也可以从后往前排。
算法步骤
比较相邻的元素。如果第一个比第二个大,就交换他们两个。
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
针对所有的元素重复以上的步骤,除了最后一个。
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
动画演示
参考代码
public static void bubbleSort(int array[]) {
int t = 0;
for (int i = 0; i < array.length - 1; i++)
for (int j = 0; j < array.length - 1 - i; j++)
if (array[j] > array[j + 1]) {
t = array[j];
array[j] = array[j + 1];
array[j + 1] = t;
}
}
二:选择排序
//选择排序 从小到大
//特点:效率低,容易实现。
//思想:每一趟从待排序序列选择一个最小的元素放到已排好序序列的末尾,剩下的为待排序序列,重复上述步骤直到完成排序。
算法步骤
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
重复第二步,直到所有元素均排序完毕。
动画演示
参考代码
public static void selectSort(int array[]) {
int t = 0;
for (int i = 0; i < array.length - 1; i++){
int index=i;
for (int j = i + 1; j < array.length; j++)
if (array[index] > array[j])
index=j;
if(index!=i){ //找到了比array[i]小的则与array[i]交换位置
t = array[i];
array[i] = array[index];
array[index] = t;
}
}
}
三:插入排序
//插入排序 从小到大
//特点:效率低,容易实现。
//思想:将数组分为两部分,将后部分元素逐一与前部分元素比较,如果前部分元素比array[i]小,就将前部分元素往后移动。当没有比array[i]小的元素,即是 合理位置,在此位置插入array[i]
算法步骤
将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)
动画演示
参考代码
public static void insertionSort(int array[]) {
int i, j, t = 0;
for (i = 1; i < array.length; i++) {
if(array[i]<array[i-1]){
t = array[i];
for (j = i - 1; j >= 0 && t < array[j]; j--)
array[j + 1] = array[j];
//插入array[i]
array[j + 1] = t;
}
}
}
四:快速排序
//快速排序 从小到大
//特点:高效,时间复杂度为nlogn。
//采用分治法的思想:首先设置一个轴值pivot,然后以这个轴值为划分基准将待排序序列分成比pivot大和比pivot小的两部分,
接下来对划分完的子序列进行快排直到子序列为一个元素为止。
算法步骤
从数列中挑出一个元素,称为 “基准”(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
动画演示
参考代码
public static void quickSort(int array[], int low, int high) {// 传入low=0,high=array.length-1;
int pivot, p_pos, i, t;// pivot->位索引;p_pos->轴值。
if (low < high) {
p_pos = low;
pivot = array[p_pos];
for (i = low + 1; i <= high; i++)
if (array[i] < pivot) {
p_pos++;
t = array[p_pos];
array[p_pos] = array[i];
array[i] = t;
}
t = array[low];
array[low] = array[p_pos];
array[p_pos] = t;
// 分而治之
quickSort(array, low, p_pos - 1);// 排序左半部分
quickSort(array, p_pos + 1, high);// 排序右半部分
}
}
五:测试
package com.svse.paixu;
import java.util.Arrays;
public class JavaSort {
//打印方法
public static void print(int[] arr) {
System.out.print("[");
for (int i = 0; i < arr.length; i++) {
if(i == arr.length-1) {
System.out.println(arr[i] + "]");
}else {
System.out.print(arr[i] + ",");
}
}
}
public static void main(String[] args) {
int[] array = { 37, 47, 23, 100, 19, 56, 56, 99, 9 };
print(array);//排序前
//JavaSort.bubbleSort(array);//冒泡排序
//JavaSort.selectSort(array);//选择排序
//JavaSort.insertionSort(array);//插入排序
JavaSort.quickSort(array, 0, array.length-1);//快速排序
System.out.println("排序后:" + Arrays.toString(array));
print(array);//排序后
}
}
六:各种排序算法性能比较