1 安装h5py
sudo apt-get install libhdf5-dev sudo pip install h5py
假设你已经安装好python和numpy模块
2 读取mat文件数据
import numpy as np import h5py f = h5py.File('data.mat') data = f['cell_name'][:]
cell_name是元胞数组的名称,假如有多级元胞目录,可以指定任意的元胞数组进行读取,比如
data = f['cell_name/.../指定的元胞数组'][:]
3 保存图像
img = images[i,...].transpose((2, 1, 0)) file = 'make3d_dataset_f460/images/'+str(i+1)+'.jpg' img = img*255 img = img.astype('uint8') cv2.imwrite(file, img) # pyplot.imsave(file, img)
整个代码流程:
import cv2 import numpy as np import h5py from matplotlib import pyplot height = 460 width = 345 def extract_data(): with h5py.File('make3d_dataset_f460.mat','r') as f: images = f['make3d_dataset_fchange/images'][:] image_num = len(images) for i in range(image_num): img = images[i,...].transpose((2, 1, 0)) file = 'make3d_dataset_f460/images/'+str(i+1)+'.jpg' img = img*255 img = img.astype('uint8') cv2.imwrite(file, img) # pyplot.imsave(file, img) def extract_labels(): with h5py.File('make3d_dataset_f460.mat','r') as f: depths = f['make3d_dataset_fchange/depths'][:] depth_num = len(depths) for i in range(depth_num): img = depths[i,...].transpose((1, 0)) file = 'make3d_dataset_f460/depths/'+str(i+1)+'.jpg' depth = img depth = depth.astype('uint8') cv2.imwrite(file, depth) # pyplot.imsave(file, img) def main(argv=None): # Input and groundtruth producer extract_data() extract_labels() print("Training data is converted into images!") if __name__ == '__main__': main()