Description
In this problem, we consider the separators in grids. Each node in a grid is connected to its eight neighbors (if they exist). In Figure-1, we illustrate a partition of a 6*6 grid with a 9-point separator (gray nodes in the figure). The nodes on the left of the separator are in set W (white nodes), and the nodes on the right of the separator are in set B (black nodes).
To simplify the problem, you can assume that all the separators referred in this problem satisfy the following restrictions:
1) It’s a minimal separator. A separator is minimal if no subset of it forms a separator.
2) It begins from a node on the top line of the grid, except the corner (i.e. 30 and 35 in the figures), and ends with a node on the bottom line of the grid, also except the corner (i.e. 0 and 5 in the figures).
3) On its way from top to bottom, it can go left, right or down, but never go up.
Now we describe a method to improve a given partition on a grid, through which we can reduce the number of nodes in the separator. This method contains two steps:
1) Select several nodes from B and add them into S. Any of the selected nodes must have a left neighbor which is in S.
2) Remove several nodes from S (excluding the nodes added in the former step), and add them into W.
After the improvement, we should ensure S is still a separator, and make the number of nodes in S as small as possible. As for Figure-1, we should add 14 and 20 into S, and remove 7, 13, 19 and 25 from S. After that, we obtain a new partition with a 7-point separator shown in Figure-2.
Your task is, given a partition on a grid, to determine the least number of nodes in the separator after the improvement.
Input
A test case of N = 0 and M = 0 indicates the end of input, and should not be processed.
Output
Sample Input
6 6
WWSBBB
WSSBBB
WSBBBB
WSBBBB
WSSSBB
WWWSBB
0 0
Sample Output
7
【题意】给出一个n*m的矩阵,包含w,s,b,s是分界线,每行每种都至少有一个,B在他的左边是S时能变成S,S无条件可以变成w,求最少的分界线s
【思路】先把能变成S的B全部变成s,然后进行BFS从第一行的S开始,把(0,s)(0,s+1)入队,进行三个方向的搜索下、左、右
#include<iostream>
#include<stdio.h>
#include<queue>
#include<string.h>
using namespace std;
const int inf=0x7777777;
const int N=;
int n,m,ans,s;
char mp[N][N];
int vis[N][N];
int di[][]={,,,,,-};//以左上角为原点,下,右,左开始搜索
struct node
{
int x,y;
int step;
};
bool go(int x,int y)
{
if(x<||x>n-||y<||y>m-) return false;
else return true;
}
void bfs()
{
memset(vis,,sizeof(vis));
queue<node>qu;
node pre,next;
pre.x=,pre.y=s;
pre.step=;
qu.push(pre);
vis[][s]=;
if(s+<m-)
{
pre.x=;pre.y=s+;
pre.step=;
qu.push(pre);
vis[][s+]=;
}
while(!qu.empty())
{
pre=qu.front();
qu.pop();
if(pre.x==n-&&pre.y>&&pre.y<m-)
{
ans=min(ans,pre.step);
}
for(int i=;i<;i++)
{
int xx=pre.x+di[i][];
int yy=pre.y+di[i][];
if(go(xx,yy)&&(!vis[xx][yy])&&mp[xx][yy]=='S')
{
next.x=xx;
next.y=yy;
next.step=pre.step+;
vis[xx][yy]=;
qu.push(next);
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m),n||m)
{
for(int i=;i<n;i++)
{
scanf("%s",mp[i]);
int flag=;
for(int j=;j<m;j++)
{
if(mp[i][j]=='B'&&mp[i][j-]=='S'&&!flag)
{
mp[i][j]='S';
flag=;
}
}
}
for(int i=;i<m;i++)
{
if(mp[][i]=='S')
{
s=i;
break;
}
}
ans=inf;
bfs();
printf("%d\n",ans); }
return ;
}