linux kernel 0.11 setup

setup作用

①读取参数放在0x90000处。

②将原本在0x10000处的system模块移至0x00000处

③加载中断描述符表,全局描述符表,进入32位保护模式。

概念

关于实模式和保护模式区别及寻址方式,该博客已经很详尽:http://blog.csdn.net/rosetta/article/details/8933200,只是有个别信息没有。

IDT:Interrupt Descriptor Table--中断描述表

GDT:Global Descriptor Table   --全局描述表

LDT:Local Descriptor Table    --局部描述表

在Intel架构中,更准确的说是保护模式下,大部分内存管理和中断服务例程都通过描述符表来控制。每个描述符存储了CPU随时可能需要获取的一个单个对象(例如服务例程、任务、一段代码或数据等)的信息。如果试图装载一个数据到一个段寄存器中,CPU需要进行安全性和访问控制检查,来确认是否获得了访问该内存区域的许可。一旦检查结束,一些有用的信息(例如最低和最高地址)被缓存在CPU中的几个不可见的寄存器中。

Intel定义了3种类型的描述符表:中断描述符表IDT(用以替换中断向量表IVT)、全局描述符表GDT和局部描述符表LDT。每个表分别通过LIDT、LGDT、LLDT指令以(size, linear address)的形式定义(注:是载入描述符表的指令,这里就是说表包含了大小和基址组成。)。大多数情况下,操作系统中启动期指定这些表的位置,然后通过一个指针直接读写这些表。

  1. 全局描述符表GDT:
 
全局描述符表在系统中只能有一个,且可以被每一个任务所共享.任何描述符都可以放在GDT中,但中断门和陷阱门放在GDT中是不会起作用的.能被多个任务共享的内存区就是通过GDT完成的,
 
  2. 局部描述符表LDT:
 
局部描述符表在系统中可以有多个,通常情况下是与任务的数量保持对等,但任务可以没有局部描述符表.任务间不相干的部分也是通过LDT实现的.这里涉及到地址映射的问题.和GDT一样,中断门和陷阱门放在LDT中是不会起作用的.
 
  3. 中断描述符表IDT:
 
和GDT一样,中断描述符表在系统最多只能有一个,中断描述符表内可以存放256个描述符,分别对应256个中断.因为每个描述符占用8个字节,所以IDT的长度可达2K.中断描述符表中可以有任务门、中断门、陷阱门三个门描述符,其它的描述符在中断描述符表中无意义。
 
  4. 段选择子
在保护模式下,段寄存器的内容已不是段值,而称其为选择子.该选择子指示描述符在上面这三个表中的位置,所以说选择子即是索引值。
当我们把段选择子装入寄存器时不仅使该寄存器值,同时CPU将该选择子所对应的GDT或LDT中的描述符装入了不可见部分。这样只要我们不进行代码切换(不重新装入新的选择子)CPU就会不会对不可见部分存储的描述符进行更新,可以直接进行访问,加快了访问速度。一旦寄存器被重新赋值,不可见部分也将被重新赋值。

  setup源代码注释

!
! setup.s (C) Linus Torvalds
!
! setup.s is responsible for getting the system data from the BIOS,
! and putting them into the appropriate places in system memory.
! both setup.s and system has been loaded by the bootblock.
!
! This code asks the bios for memory/disk/other parameters, and
! puts them in a "safe" place: 0x90000-0x901FF, ie where the
! boot-block used to be. It is then up to the protected mode
! system to read them from there before the area is overwritten
! for buffer-blocks.
! ! NOTE! These had better be the same as in bootsect.s! INITSEG = 0x9000 ! we move boot here - out of the way
SYSSEG = 0x1000 ! system loaded at 0x10000 ().
SETUPSEG = 0x9020 ! this is the current segment .globl begtext, begdata, begbss, endtext, enddata, endbss
.text
begtext:
.data
begdata:
.bss
begbss:
.text entry start
start: ! ok, the read went well so we get current cursor position and save it for
! posterity.
! input:
! BH = page number.
! return:
! DH = row.
! DL = column.
! CH = cursor start line.
! CL = cursor bottom line.
mov ax,#INITSEG ! this is done in bootsect already, but...
mov ds,ax
mov ah,#0x03 ! read cursor pos
xor bh,bh
int 0x10 ! save it in known place, con_init fetches
mov [],dx ! it from 0x90000.光标的行 列的值 ! Get memory size (extended mem, kB) 内存大小 mov ah,#0x88
int 0x15
mov [],ax ! Get video-card data: 声卡数据 mov ah,#0x0f
int 0x10
mov [],bx ! bh = display page
mov [],ax ! al = video mode, ah = window width ! check for EGA/VGA and some config parameters VGA和配置参数 mov ah,#0x12
mov bl,#0x10
int 0x10
mov [],ax
mov [],bx
mov [],cx ! Get hd0 data 磁盘第一分区数据 mov ax,#0x0000
mov ds,ax
lds si,[*0x41]
mov ax,#INITSEG
mov es,ax
mov di,#0x0080
mov cx,#0x10
rep
movsb ! Get hd1 data 磁盘第二分区数据 mov ax,#0x0000
mov ds,ax
lds si,[*0x46]
mov ax,#INITSEG
mov es,ax
mov di,#0x0090
mov cx,#0x10
rep
movsb ! Check that there IS a hd1 :-) 检查是否存在第二个硬盘,不存在则清空磁盘二的参数表 mov ax,#0x01500
mov dl,#0x81
int 0x13
jc no_disk1
cmp ah,#
je is_disk1
no_disk1: !清空磁盘二的参数表
mov ax,#INITSEG
mov es,ax
mov di,#0x0090
mov cx,#0x10
mov ax,#0x00
rep
stosb
is_disk1: ! now we want to move to protected mode ...开始我们要保护模式方面的工作了。 cli ! no interrupts allowed !cli是关中断,防止有些硬件中断对程序的干扰 sti是开中断,允许硬件中断 ! first we move the system to it's rightful place mov ax,#0x0000
cld ! 'direction'=0, movs moves forward cld即告诉程序si,di向前移动,std指令为设置方向,告诉程序si,di向后移动
do_move: ! 0x1000=64k 循环移动ds:si->es:di数据,总共移动cx=(0x9000-0x1000)=0x8000的数据
mov es,ax ! destination segment
add ax,#0x1000
cmp ax,#0x9000
jz end_move
mov ds,ax ! source segment
sub di,di
sub si,si
mov cx,#0x8000
rep
movsw
jmp do_move ! then we load the segment descriptors end_move: ! 从实模式进入保护模式
mov ax,#SETUPSEG ! right, forgot this at first. didn't work :-)
mov ds,ax
lidt idt_48 ! load idt with , 指令以(size=, linear address=)的形式加载中断描述符表
lgdt gdt_48 ! load gdt with whatever appropriate
! 指令以(size=0x800, linear address=+gdt,0x9)的形式加载全局描述符表 ! that was painless, now we enable A20 call empty_8042!等待为空
mov al,#0xD1 ! command write
out #0x64,al
call empty_8042
mov al,#0xDF ! A20 on
out #0x60,al
call empty_8042 ! well, that went ok, I hope. Now we have to reprogram the interrupts :-(
! we put them right after the intel-reserved hardware interrupts, at
! int 0x20-0x2F. There they won't mess up anything. Sadly IBM really
! messed this up with the original PC, and they haven't been able to
! rectify it afterwards. Thus the bios puts interrupts at 0x08-0x0f,
! which is used for the internal hardware interrupts as well. We just
! have to reprogram the 's, and it isn't fun. mov al,#0x11 ! initialization sequence
out #0x20,al ! send it to 8259A-
.word 0x00eb,0x00eb ! jmp $+, jmp $+
out #0xA0,al ! and to 8259A-
.word 0x00eb,0x00eb
mov al,#0x20 ! start of hardware int's (0x20)
out #0x21,al
.word 0x00eb,0x00eb
mov al,#0x28 ! start of hardware int's (0x28)
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0x04 ! - is master
out #0x21,al
.word 0x00eb,0x00eb
mov al,#0x02 ! - is slave
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0x01 ! mode for both
out #0x21,al
.word 0x00eb,0x00eb
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0xFF ! mask off all interrupts for now
out #0x21,al
.word 0x00eb,0x00eb
out #0xA1,al ! well, that certainly wasn't fun :-(. Hopefully it works, and we don't
! need no steenking BIOS anyway (except for the initial loading :-).
! The BIOS-routine wants lots of unnecessary data, and it's less
! "interesting" anyway. This is how REAL programmers do it.
!
! Well, now's the time to actually move into protected mode. To make
! things as simple as possible, we do no register set-up or anything,
! we let the gnu-compiled -bit programs do that. We just jump to
! absolute address 0x00000, in -bit protected mode. mov ax,#0x0001 ! protected mode (PE) bit
lmsw ax ! This is it!
jmpi , ! jmp offset of segment (cs) ! This routine checks that the keyboard command queue is empty
! No timeout is used - if this hangs there is something wrong with
! the machine, and we probably couldn't proceed anyway.
empty_8042:
.word 0x00eb,0x00eb
in al,#0x64 ! 8042 status port
test al,#2 ! is input buffer full?
jnz empty_8042 ! yes - loop
ret gdt:
.word 0,0,0,0 ! dummy .word 0x07FF ! 8Mb - limit=2047 (2048*4096=8Mb)
.word 0x0000 ! base address=0
.word 0x9A00 ! code read/exec
.word 0x00C0 ! granularity=4096, 386 .word 0x07FF ! 8Mb - limit=2047 (2048*4096=8Mb)
.word 0x0000 ! base address=0
.word 0x9200 ! data read/write
.word 0x00C0 ! granularity=4096, 386 idt_48:
.word 0 ! idt limit=0
.word 0,0 ! idt base=0L gdt_48:
.word 0x800 ! gdt limit=2048, 256 GDT entries
.word 512+gdt,0x9 ! gdt base = 0X9xxxx .text
endtext:
.data
enddata:
.bss
endbss:
上一篇:Java类编译、加载、和执行


下一篇:Web表格