JDK本身提供了很多方便的JVM性能调优监控工具,除了集成式的VisualVM和jConsole外,还有jps、jinfo、jstat、jmap+jhat、jstack等小巧的工具,本博客希望能起抛砖引玉之用,让大家能开始对JVM性能调优的常用工具有所了解。
现实企业级Java开发中,有时候我们会碰到下面这些问题:
OutOfMemoryError,内存不足
内存泄露
线程死锁
锁争用(Lock Contention)
Java进程消耗CPU过高
......
这些问题在日常开发中可能被很多人忽视(比如有的人遇到上面的问题只是重启服务器或者调大内存,而不会深究问题根源),但能够理解并解决这些问题是Java程序员进阶的必备要求。本文将对一些常用的JVM性能调优监控工具进行介绍,希望能起抛砖引玉之用。本文参考了网上很多资料,难以一一列举,在此对这些资料的作者表示感谢!关于JVM性能调优相关的资料,请参考文末。
jps – 用来查看JVM里面所有进程的具体状态, 包括进程ID,进程启动的路径等等。
jinfo –可以知道崩溃的JVM参数配置信息及JDK版本安装路径等信息。
jstat – JVM内建的指令对Java应用程序的资源和性能进行实时的命令行的监控,包括了对Heap size和垃圾回收状况的监控等等。
jmap+jhat –jmap可以生成堆转储快照文件,jhat可以查看快照文件分析内存溢出可能的原因。
jstack -- 获取JVM当前线程,JVM内每个线程正在执行方法的栈信息,包括线程状态,什么线程操作导致当前线程状态。
jdb – jdb 用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
jconsole – jconsole是基于Java Management Extensions (JMX)的实时图形化监测工具,这个工具利用了内建到JVM里面的JMX指令来提供实时的性能和资源的监控,包括了Java程序的内存使用,Heap size, 线程的状态,类的分配状态和空间使用等等。
1、 jps(JVM Process Status Tool)
jps主要用来输出JVM中运行的进程状态信息。语法格式如下:
如果不指定hostid就默认为当前主机或服务器。
命令行参数选项说明如下:
1 |
-q 不输出类名、Jar名和传入main方法的参数 |
比如下面:
1 |
root@ubuntu:/ # jps -m -l
|
2 |
2458 org.artifactory.standalone.main.Main /usr/ local /artifactory-2.2.5/etc/jetty.xml
|
3 |
29920 com.sun.tools.hat.Main -port 9998 /tmp/dump.dat |
4 |
3149 org.apache.catalina.startup.Bootstrap start |
5 |
30972 sun.tools.jps.Jps -m -l |
6 |
8247 org.apache.catalina.startup.Bootstrap start |
7 |
25687 com.sun.tools.hat.Main -port 9999 dump.dat |
2、jinfo(JVM Configuration Info)
描述:输出给定 java 进程所有的配置信息。包括 java 系统属性和 jvm 命令行标记等。
用法:
jinfo [ option ] pid
jinfo [ option ] executable core
jinfo [ option ] [server-id@]remote-hostname-or-IP
例子:
jinfo -flag MaxHeapSize 10212
得到结果如下:
-XX:MaxHeapSize=786432000
jinfo 10212
得到结果如下:
Attaching to process ID 10212, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 25.101-b13
Java System Properties:
java.runtime.name = Java(TM) SE Runtime Environment
java.vm.version = 25.101-b13
sun.boot.library.path = D:\MyAPPs\Java\jdk1.8.0_101\jre\bin
java.vendor.url = http://java.oracle.com/
java.vm.vendor = Oracle Corporation
path.separator = ;
file.encoding.pkg = sun.io
java.vm.name = Java HotSpot(TM) 64-Bit Server VM
sun.os.patch.level =
sun.java.launcher = SUN_STANDARD
user.script =
user.country = CN
user.dir = E:\projects\git\t-io
java.vm.specification.name = Java Virtual Machine Specification
java.runtime.version = 1.8.0_101-b13
java.awt.graphicsenv = sun.awt.Win32GraphicsEnvironment
os.arch = amd64
java.endorsed.dirs = D:\MyAPPs\Java\jdk1.8.0_101\jre\lib\endorsed
line.separator =
java.io.tmpdir = C:\Users\Barry\AppData\Local\Temp\
java.vm.specification.vendor = Oracle Corporation
user.variant =
os.name = Windows 7
sun.jnu.encoding = GBK
java.library.path = D:\MyAPPs\Java\jdk1.8.0_101\bin;...
java.specification.name = Java Platform API Specification
java.class.version = 52.0
sun.management.compiler = HotSpot 64-Bit Tiered Compilers
os.version = 6.1
user.home = C:\Users\Barry
user.timezone = Asia/Shanghai
java.awt.printerjob = sun.awt.windows.WPrinterJob
file.encoding = UTF-8
java.specification.version = 1.8
user.name = Barry
java.class.path =
java.vm.specification.version = 1.8
sun.arch.data.model = 64
sun.java.command = org.tio.examples.helloworld.client.HelloClientStarter
java.home = D:\MyAPPs\Java\jdk1.8.0_101\jre
user.language = zh
java.specification.vendor = Oracle Corporation
awt.toolkit = sun.awt.windows.WToolkit
java.vm.info = mixed mode
java.version = 1.8.0_101
java.ext.dirs = D:\MyAPPs\Java\jdk1.8.0_101\jre\lib\ext;C:\Windows\Sun\Java\lib\
ext
sun.boot.class.path = D:\MyAPPs\Java\jdk1.8.0_101\jre\lib\resources.jar;..
file.separator = \
java.vendor.url.bug = http://bugreport.sun.com/bugreport/
sun.io.unicode.encoding = UnicodeLittle
sun.cpu.endian = little
sun.desktop = windows
sun.cpu.isalist = amd64
VM Flags:
Non-default VM flags: -XX:CICompilerCount=4 -XX:InitialHeapSize=134217728 -XX:Ma
xHeapSize=786432000 -XX:MaxNewSize=262144000 -XX:MinHeapDeltaBytes=524288 -XX:Ne
wSize=44564480 -XX:OldSize=89653248 -XX:+UseCompressedClassPointers -XX:+UseComp
ressedOops -XX:+UseFastUnorderedTimeStamps -XX:-UseLargePagesIndividualAllocatio
n -XX:+UseParallelGC
Command line: -Xms128m -Xmx750m -javaagent:D:\MyAPPs\IntelliJ IDEA 2017.1.1\lib
\idea_rt.jar=52309:D:\MyAPPs\IntelliJ IDEA 2017.1.1\bin -Dfile.encoding=UTF-8
这个命令包含了 JDK 和 JVM 运行起来时的一些属性。
3、jstat(JVM statistics Monitoring Tool统计监测工具,比如新生代,老年代内存使用情况)
语法格式如下:
1 |
jstat [ generalOption | outputOptions vmid [interval[s|ms] [count]] ] |
vmid是虚拟机ID,在Linux/Unix系统上一般就是进程ID。interval是采样时间间隔。count是采样数目。比如下面输出的是GC信息,采样时间间隔为250ms,采样数为4:
1 |
root@ubuntu:/ # jstat -gc 21711 250 4
|
2 |
S0C S1C S0U S1U EC EU OC OU PC PU YGC YGCT FGC FGCT GCT
|
3 |
192.0 192.0 64.0 0.0 6144.0 1854.9 32000.0 4111.6 55296.0 25472.7 702 0.431 3 0.218 0.649 |
4 |
192.0 192.0 64.0 0.0 6144.0 1972.2 32000.0 4111.6 55296.0 25472.7 702 0.431 3 0.218 0.649 |
5 |
192.0 192.0 64.0 0.0 6144.0 1972.2 32000.0 4111.6 55296.0 25472.7 702 0.431 3 0.218 0.649 |
6 |
192.0 192.0 64.0 0.0 6144.0 2109.7 32000.0 4111.6 55296.0 25472.7 702 0.431 3 0.218 0.649 |
要明白上面各列的意义,先看JVM堆内存布局:
可以看出:
2 |
年轻代 = Eden区 + 两个Survivor区(From和To) |
现在来解释各列含义:
1 |
S0C、S1C、S0U、S1U:Survivor 0/1区容量(Capacity)和使用量(Used) |
6 |
FGC、FGCT:Full GC次数和Full GC耗时 |
4、 jmap(Memory Map)和jhat(Java Heap Analysis Tool)
jmap用来查看堆内存使用状况,生成堆转储快照,一般用jhat查看jmap生成的快照。
jmap语法格式如下:
2 |
jmap [option] executable core |
3 |
jmap [option] [server- id @]remote- hostname -or-ip
|
如果运行在64位JVM上,可能需要指定-J-d64命令选项参数。
打印进程的类加载器和类加载器加载的持久代对象信息,输出:类加载器名称、对象是否存活(不可靠)、对象地址、父类加载器、已加载的类大小等信息,如下图:
使用jmap -heap pid查看进程堆内存使用情况,包括使用的GC算法、堆配置参数和各代中堆内存使用情况。比如下面的例子:
01 |
root@ubuntu:/ # jmap -heap 21711
|
02 |
Attaching to process ID 21711, please wait... |
03 |
Debugger attached successfully. |
04 |
Server compiler detected. |
05 |
JVM version is 20.10-b01 |
07 |
using thread- local object allocation.
|
08 |
Parallel GC with 4 thread(s) |
13 |
MaxHeapSize = 2067791872 (1972.0MB)
|
14 |
NewSize = 1310720 (1.25MB)
|
15 |
MaxNewSize = 17592186044415 MB
|
16 |
OldSize = 5439488 (5.1875MB)
|
19 |
PermSize = 21757952 (20.75MB)
|
20 |
MaxPermSize = 85983232 (82.0MB)
|
25 |
capacity = 6422528 (6.125MB)
|
26 |
used = 5445552 (5.1932830810546875MB)
|
27 |
free = 976976 (0.9317169189453125MB)
|
28 |
84.78829520089286% used
|
30 |
capacity = 131072 (0.125MB)
|
31 |
used = 98304 (0.09375MB)
|
32 |
free = 32768 (0.03125MB)
|
35 |
capacity = 131072 (0.125MB)
|
37 |
free = 131072 (0.125MB)
|
40 |
capacity = 35258368 (33.625MB)
|
41 |
used = 4119544 (3.9287033081054688MB)
|
42 |
free = 31138824 (29.69629669189453MB)
|
43 |
11.683876009235595% used
|
45 |
capacity = 52428800 (50.0MB)
|
46 |
used = 26075168 (24.867218017578125MB)
|
47 |
free = 26353632 (25.132781982421875MB)
|
48 |
49.73443603515625% used
|
使用jmap -histo[:live] pid查看堆内存中的对象数目、大小统计直方图,如果带上live则只统计活对象,如下:
01 |
root@ubuntu:/ # jmap -histo:live 21711 | more
|
03 |
num #instances #bytes class name
|
04 |
---------------------------------------------- |
05 |
1: 38445 5597736 <constMethodKlass>
|
06 |
2: 38445 5237288 <methodKlass>
|
07 |
3: 3500 3749504 <constantPoolKlass>
|
08 |
4: 60858 3242600 <symbolKlass>
|
09 |
5: 3500 2715264 <instanceKlassKlass>
|
10 |
6: 2796 2131424 <constantPoolCacheKlass>
|
14 |
10: 1225 639656 <methodDataKlass>
|
15 |
11: 14194 454208 java.lang.String
|
16 |
12: 3809 396136 java.lang.Class
|
19 |
15: 3028 266464 java.lang.reflect.Method
|
20 |
16: 280 163520 <objArrayKlassKlass>
|
21 |
17: 4355 139360 java.util.HashMap$Entry
|
22 |
18: 1869 138568 [Ljava.util.HashMap$Entry;
|
23 |
19: 2443 97720 java.util.LinkedHashMap$Entry
|
24 |
20: 2072 82880 java.lang.ref.SoftReference
|
25 |
21: 1807 71528 [Ljava.lang.Object;
|
26 |
22: 2206 70592 java.lang.ref.WeakReference
|
27 |
23: 934 52304 java.util.LinkedHashMap
|
28 |
24: 871 48776 java.beans.MethodDescriptor
|
29 |
25: 1442 46144 java.util.concurrent.ConcurrentHashMap$HashEntry
|
30 |
26: 804 38592 java.util.HashMap
|
31 |
27: 948 37920 java.util.concurrent.ConcurrentHashMap$Segment
|
32 |
28: 1621 35696 [Ljava.lang.Class;
|
33 |
29: 1313 34880 [Ljava.lang.String;
|
34 |
30: 1396 33504 java.util.LinkedList$Entry
|
35 |
31: 462 33264 java.lang.reflect.Field
|
36 |
32: 1024 32768 java.util.Hashtable$Entry
|
37 |
33: 948 31440 [Ljava.util.concurrent.ConcurrentHashMap$HashEntry;
|
class name是对象类型,说明如下:
还有一个很常用的情况是:用jmap把进程内存使用情况dump到文件中,再用jhat分析查看。jmap进行dump命令格式如下:
1 |
jmap -dump: format =b, file =dumpFileName
|
我一样地对上面进程ID为21711进行Dump:
1 |
root@ubuntu:/ # jmap -dump:format=b,file=/tmp/dump.dat 21711
|
2 |
Dumping heap to /tmp/dump.dat ... |
dump出来的文件可以用MAT、VisualVM等工具查看,这里用jhat查看:
01 |
root@ubuntu:/ # jhat -port 9998 /tmp/dump.dat
|
02 |
Reading from /tmp/dump.dat... |
03 |
Dump file created Tue Jan 28 17:46:14 CST 2014
|
04 |
Snapshot read , resolving...
|
05 |
Resolving 132207 objects... |
06 |
Chasing references, expect 26 dots.......................... |
07 |
Eliminating duplicate references.......................... |
09 |
Started HTTP server on port 9998 |
然后就可以在浏览器中输入主机地址:9998查看了:
上面红线框出来的部分大家可以自己去摸索下,最后一项支持OQL(对象查询语言)。
5、 jstack(Stack Trace for Java)
jstack主要用来查看某个Java进程内的线程堆栈信息。语法格式如下:
2 |
jstack [option] executable core |
3 |
jstack [option] [server- id @]remote- hostname -or-ip
|
命令行参数选项说明如下:
1 |
-l long listings,会打印出额外的锁信息,在发生死锁时可以用jstack -l pid来观察锁持有情况 |
2 |
-m mixed mode,不仅会输出Java堆栈信息,还会输出C/C++堆栈信息(比如Native方法) |
jstack可以定位到线程堆栈,根据堆栈信息我们可以定位到具体代码,所以它在JVM性能调优中使用得非常多。下面我们来一个实例找出某个Java进程中最耗费CPU的Java线程并定位堆栈信息,用到的命令有ps、top、printf、jstack、grep。
第一步先找出Java进程ID,我部署在服务器上的Java应用名称为mrf-center:
1 |
root@ubuntu:/ # ps -ef | grep mrf-center | grep -v grep
|
2 |
root 21711 1 1 14:47 pts/3 00:02:10 java -jar mrf-center.jar |
得到进程ID为21711,第二步找出该进程内最耗费CPU的线程,可以使用ps -Lfp pid或者ps -mp pid -o THREAD, tid, time或者top -Hp pid,我这里用第三个,输出如下:
TIME列就是各个Java线程耗费的CPU时间,CPU时间最长的是线程ID为21742的线程,用
得到21742的十六进制值为54ee,下面会用到。
OK,下一步终于轮到jstack上场了,它用来输出进程21711的堆栈信息,然后根据线程ID的十六进制值grep,如下:
1 |
root@ubuntu:/ # jstack 21711 | grep 54ee
|
2 |
"PollIntervalRetrySchedulerThread" prio=10 tid=0x00007f950043e000 nid=0x54ee in Object.wait() [0x00007f94c6eda000]
|
可以看到CPU消耗在PollIntervalRetrySchedulerThread这个类的Object.wait(),我找了下我的代码,定位到下面的代码:
02 |
getLog().info( "Thread [" + getName() + "] is idle waiting..." );
|
03 |
schedulerThreadState = PollTaskSchedulerThreadState.IdleWaiting; |
04 |
long now = System.currentTimeMillis();
|
05 |
long waitTime = now + getIdleWaitTime();
|
06 |
long timeUntilContinue = waitTime - now;
|
07 |
synchronized (sigLock) {
|
10 |
sigLock.wait(timeUntilContinue);
|
13 |
catch (InterruptedException ignore) {
|
它是轮询任务的空闲等待代码,上面的sigLock.wait(timeUntilContinue)就对应了前面的Object.wait()。
其他JVM性能调优参考资料:
《Java虚拟机规范》
《Java Performance》
《Trouble Shooting Guide for JavaSE 6 with HotSpot VM》: http://www.oracle.com/technetwork/java/javase/tsg-vm-149989.pdf
《Effective Java》
VisualVM: http://docs.oracle.com/javase/7/docs/technotes/guides/visualvm/
jConsole: http://docs.oracle.com/javase/1.5.0/docs/guide/management/jconsole.html
Monitoring and Managing JavaSE 6 Applications: http://www.oracle.com/technetwork/articles/javase/monitoring-141801.html