3 seconds
256 megabytes
standard input
standard output
The sequence of integer pairs (a1, b1), (a2, b2), ..., (ak, bk) is beautiful, if the following statements are fulfilled:
- 1 ≤ a1 ≤ b1 < a2 ≤ b2 < ... < ak ≤ bk ≤ n, where n is a given positive integer;
- all numbers b1 - a1, b2 - a2, ..., bk - ak are distinct.
For the given number n find the number of beautiful sequences of length k. As the answer can be rather large, print the remainder after dividing it by 1000000007 (109 + 7).
The first line contains integer t (1 ≤ t ≤ 2·105) — the number of the test data.
Each of the next t lines contains two integers n and k (1 ≤ k ≤ n ≤ 1000).
For each test from the input print the answer to the problem modulo 1000000007 (109 + 7). Print the answers to the tests in the order in which the tests are given in the input.
6
1 1
2 1
2 2
3 1
3 2
3 3
1
3
0
6
2
0
In the first test sample there is exactly one beautiful sequence: (1, 1).
In the second test sample, the following sequences are beautiful:
- (1, 1);
- (1, 2);
- (2, 2).
In the fourth test sample, the following sequences are beautiful:
- (1, 1);
- (1, 2);
- (1, 3);
- (2, 2);
- (2, 3);
- (3, 3).
In the fifth test sample, the following sequences are beautiful:
- (1, 1), (2, 3);
- (1, 2), (3, 3).
In the third and sixth samples, there are no beautiful sequences.
dp 背包问题
预处理fac[i] 为 i! c[i][j] 为组合数 dp[i][j] 代表 i 体积中装 j 个物品
dp[i][j] = dp[i - j][j - 1] + dp[i - j][j];
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; typedef long long ll; const int MOD = 1e9 + ,N = ;
ll c[N + ][N + ],dp[N + ][N + ],fac[N + ]; void init() {
fac[] = ;
for(int i = ; i <= N; ++i) {
fac[i] = fac[i - ] * i % MOD;
} for(int i = ; i <= N; ++i) {
c[i][] = c[i][i] = ;
for(int j = ; j < i; ++j) {
c[i][j] = (c[i - ][j] + c[i - ][j - ]) % MOD;
}
} dp[][] = ;
for(int i = ; i <= N; ++i) {
for(int j = ; j <= i; ++j) {
dp[i][j] = (dp[i - j][j] + dp[i - j][j - ]) % MOD;
}
}
}
int main()
{
init();
int t;
scanf("%d",&t); while(t--) {
int n,k,ans = ;
scanf("%d%d",&n,&k);
for(int s = k * (k + ) / ; s <= n; ++s) {
ans = (ans + dp[s][k] * c[n - s + k][k]) % MOD;
} printf("%d\n",ans * fac[k] % MOD); }
//cout << "Hello world!" << endl;
return ;
}