av_parser_parse2用法以及解读

首先我们看ffmpeg中examples中的一个案例:

/*
 * Copyright (c) 2001 Fabrice Bellard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

/**
 * @file
 * video decoding with libavcodec API example
 *
 * @example decode_video.c
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <libavcodec/avcodec.h>

#define INBUF_SIZE 4096

static void pgm_save(unsigned char *buf, int wrap, int xsize, int ysize,
                     char *filename)
{
    FILE *f;
    int i;

    f = fopen(filename,"wb");
    fprintf(f, "P5\n%d %d\n%d\n", xsize, ysize, 255);
    for (i = 0; i < ysize; i++)
        fwrite(buf + i * wrap, 1, xsize, f);
    fclose(f);
}

static void decode(AVCodecContext *dec_ctx, AVFrame *frame, AVPacket *pkt,
                   const char *filename)
{
    char buf[1024];
    int ret;

    ret = avcodec_send_packet(dec_ctx, pkt);
    if (ret < 0) {
        fprintf(stderr, "Error sending a packet for decoding\n");
        exit(1);
    }

    while (ret >= 0) {
        ret = avcodec_receive_frame(dec_ctx, frame);
        if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF)
            return;
        else if (ret < 0) {
            fprintf(stderr, "Error during decoding\n");
            exit(1);
        }

        printf("saving frame %3d\n", dec_ctx->frame_number);
        fflush(stdout);

        /* the picture is allocated by the decoder. no need to
           free it */
        snprintf(buf, sizeof(buf), "%s-%d", filename, dec_ctx->frame_number);
        pgm_save(frame->data[0], frame->linesize[0],
                 frame->width, frame->height, buf);
    }
}

//我们直接从main函数看起,这个案例是从本地读取一个h264/265文件,(当然也可以是其它类型文件)
//但是一定要保证这个文件没有被封装过
//输入必须是只包含视频编码数据“裸流”(例如H.264、HEVC码流文件),而不能是包含封装格式的媒体数据(例如AVI、MKV、MP4)
int main(int argc, char **argv)
{
    const char *filename, *outfilename;
    const AVCodec *codec;
    AVCodecParserContext *parser;
    AVCodecContext *c= NULL;
    FILE *f;
    AVFrame *frame;
    uint8_t inbuf[INBUF_SIZE + AV_INPUT_BUFFER_PADDING_SIZE];
    uint8_t *data;
    size_t   data_size;
    int ret;
    AVPacket *pkt;

    if (argc <= 2) {
        fprintf(stderr, "Usage: %s <input file> <output file>\n"
                "And check your input file is encoded by mpeg1video please.\n", argv[0]);
        exit(0);
    }
    filename    = argv[1];
    outfilename = argv[2];

    pkt = av_packet_alloc();
    if (!pkt)
        exit(1);

    /* set end of buffer to 0 (this ensures that no overreading happens for damaged MPEG streams) */
    memset(inbuf + INBUF_SIZE, 0, AV_INPUT_BUFFER_PADDING_SIZE);

    /* find the MPEG-1 video decoder */
    //这里是寻找解码器,一般来说,ffmpeg都包含一个contex上下文,然后其中包含一个具体的业务指针
    //比如这里AVCodecContext和
    codec = avcodec_find_decoder(AV_CODEC_ID_H264);
    if (!codec) {
        fprintf(stderr, "Codec not found\n");
        exit(1);
    }
//初始化解析器,也就是根据codec->id来确定解析器的具体类型,解析器具体类型可以看文章最后。
    parser = av_parser_init(codec->id);
    if (!parser) {
        fprintf(stderr, "parser not found\n");
        exit(1);
    }

    c = avcodec_alloc_context3(codec);
    if (!c) {
        fprintf(stderr, "Could not allocate video codec context\n");
        exit(1);
    }

    /* For some codecs, such as msmpeg4 and mpeg4, width and height
       MUST be initialized there because this information is not
       available in the bitstream. */

    /* open it */
    //打开解码器
    //如果是cpu解码,可以设置解码线程数量
    //分配AVCodecContext
    /**
     * thread count
     * is used to decide how many independent tasks should be passed to execute()
     * - encoding: Set by user.
     * - decoding: Set by user.
     */
   c->thread_count=10;
    if (avcodec_open2(c, codec, NULL) < 0) {
        fprintf(stderr, "Could not open codec\n");
        exit(1);
    }

    f = fopen(filename, "rb");
    if (!f) {
        fprintf(stderr, "Could not open %s\n", filename);
        exit(1);
    }

    frame = av_frame_alloc();
    if (!frame) {
        fprintf(stderr, "Could not allocate video frame\n");
        exit(1);
    }

    while (!feof(f)) {
        /* read raw data from the input file */
        data_size = fread(inbuf, 1, INBUF_SIZE, f);
        if (!data_size)
            break;

        /* use the parser to split the data into frames */
        data = inbuf;
        //注意这里,这里是个小循环,也就是说,data中有可能包含多个nal单元,
        //每次呢只会找出一个nal,循环,直到所有nal找出来为止
        while (data_size > 0) {
        //本章重点其实在这里,这个函数是做上面的呢,
            ret = av_parser_parse2(parser, c, &pkt->data, &pkt->size,
                                   data, data_size, AV_NOPTS_VALUE, AV_NOPTS_VALUE, 0);
            if (ret < 0) {
                fprintf(stderr, "Error while parsing\n");
                exit(1);
            }
            //这里向前移位
            data      += ret;
            data_size -= ret;

            if (pkt->size)
                decode(c, frame, pkt, outfilename);
        }
    }

    /* flush the decoder */
    decode(c, frame, NULL, outfilename);

    fclose(f);

    av_parser_close(parser);
    avcodec_free_context(&c);
    av_frame_free(&frame);
    av_packet_free(&pkt);

    return 0;
}

这里看一下av_parse_parse2
用于解析输入的数据流并把它们分成一帧一帧的压缩编码数据。比较形象的说法就是把长长的一段连续的数据“切割”成一段段的数据。核心函数是av_parser_parse2():
av_parser_parse2():解析数据获得一个Packet, 从输入的数据流中分离出一帧一帧的压缩编码数据。

int av_parser_parse2(AVCodecParserContext *s, AVCodecContext *avctx,
                     uint8_t **poutbuf, int *poutbuf_size,
                     const uint8_t *buf, int buf_size,
                     int64_t pts, int64_t dts, int64_t pos)
{
    int index, i;
    uint8_t dummy_buf[AV_INPUT_BUFFER_PADDING_SIZE];

    av_assert1(avctx->codec_id != AV_CODEC_ID_NONE);

    /* Parsers only work for the specified codec ids. */
    av_assert1(avctx->codec_id == s->parser->codec_ids[0] ||
               avctx->codec_id == s->parser->codec_ids[1] ||
               avctx->codec_id == s->parser->codec_ids[2] ||
               avctx->codec_id == s->parser->codec_ids[3] ||
               avctx->codec_id == s->parser->codec_ids[4]);

    if (!(s->flags & PARSER_FLAG_FETCHED_OFFSET)) {
        s->next_frame_offset =
        s->cur_offset        = pos;
        s->flags            |= PARSER_FLAG_FETCHED_OFFSET;
    }

    if (buf_size == 0) {
        /* padding is always necessary even if EOF, so we add it here */
        memset(dummy_buf, 0, sizeof(dummy_buf));
        buf = dummy_buf;
    } else if (s->cur_offset + buf_size != s->cur_frame_end[s->cur_frame_start_index]) { /* skip remainder packets */
        /* add a new packet descriptor */
        i = (s->cur_frame_start_index + 1) & (AV_PARSER_PTS_NB - 1);
        s->cur_frame_start_index = i;
        s->cur_frame_offset[i]   = s->cur_offset;
        s->cur_frame_end[i]      = s->cur_offset + buf_size;
        s->cur_frame_pts[i]      = pts;
        s->cur_frame_dts[i]      = dts;
        s->cur_frame_pos[i]      = pos;
    }

    if (s->fetch_timestamp) {
        s->fetch_timestamp = 0;
        s->last_pts        = s->pts;
        s->last_dts        = s->dts;
        s->last_pos        = s->pos;
        ff_fetch_timestamp(s, 0, 0, 0);
    }
    /* WARNING: the returned index can be negative */
    //这里就是具体解析器的解析函数了,比如我假设我们打开的文件是test.h264裸流文件
    /*
AVCodecParser ff_h264_parser = {
    .codec_ids      = { AV_CODEC_ID_H264 },
    .priv_data_size = sizeof(H264ParseContext),
    .parser_init    = init,
    .parser_parse   = h264_parse,
    .parser_close   = h264_close,
    .split          = h264_split,
};
*/
    index = s->parser->parser_parse(s, avctx, (const uint8_t **) poutbuf,
                                    poutbuf_size, buf, buf_size);
    av_assert0(index > -0x20000000); // The API does not allow returning AVERROR codes
#define FILL(name) if(s->name > 0 && avctx->name <= 0) avctx->name = s->name
    if (avctx->codec_type == AVMEDIA_TYPE_VIDEO) {
        FILL(field_order);
    }

    /* update the file pointer */
    
    if (*poutbuf_size) {
        /* fill the data for the current frame */
        s->frame_offset = s->next_frame_offset;

        /* offset of the next frame */
        s->next_frame_offset = s->cur_offset + index;
        s->fetch_timestamp   = 1;
    }
    if (index < 0)
        index = 0;
    s->cur_offset += index;
    return index;
}

/这个函数的功能是从一大片数据中,分割出一个个nal单元
一个图像序列的组成:SPS+PPS+SEI+一个I帧+若干个P帧。SPS、PPS、SEI、一个I帧、一个P帧都可以称为一个NALU
什么是NALU?
H264码流可以分为两层,VCL层和NAL层,NAL的全称是Network abstraction layer,叫网络抽象层,它保存了H264相关的参数信息和图像信息,NAL层由多个单元NALU组成,NALU由了NALU头(00 00 00 01或者00 00 01)、sps(序列参数集)、pps(图像参数集合)、slice、sei、IDR帧、I帧(在图像运动变化较少时,I帧后面是7个P帧,如果图像运动变化大时,一个序列就短了,I帧后面可能是3个或者4个P帧)、P帧、B帧等数据。

sps、pps、I帧、P帧在NALU中的关系和nalu type判断
一个完整的NALU单元结构图如下:
av_parser_parse2用法以及解读

static int h264_split(AVCodecContext *avctx,
                      const uint8_t *buf, int buf_size)
{
    uint32_t state = -1;
    int has_sps    = 0;
    int has_pps    = 0;
    const uint8_t *ptr = buf, *end = buf + buf_size;
    int nalu_type;

    while (ptr < end) {
    //这里寻找起始头
        ptr = avpriv_find_start_code(ptr, end, &state);
        if ((state & 0xFFFFFF00) != 0x100)
            break;
        nalu_type = state & 0x1F;
        if (nalu_type == H264_NAL_SPS) {
            has_sps = 1;
        } else if (nalu_type == H264_NAL_PPS)
            has_pps = 1;
        /* else if (nalu_type == 0x01 ||
         *     nalu_type == 0x02 ||
         *     nalu_type == 0x05) {
         *  }
         */
        else if ((nalu_type != H264_NAL_SEI || has_pps) &&
                  nalu_type != H264_NAL_AUD && nalu_type != H264_NAL_SPS_EXT &&
                  nalu_type != 0x0f) {
                  //
            if (has_sps) {
                while (ptr - 4 > buf && ptr[-5] == 0)
                    ptr--;
                return ptr - 4 - buf;
            }
        }
    }

    return 0;
}
int h264_parse(AVCodecParserContext *s,
                      AVCodecContext *avctx,
                      const uint8_t **poutbuf, int *poutbuf_size,
                      const uint8_t *buf, int buf_size)
{
    H264ParseContext *p = s->priv_data;
    ParseContext *pc = &p->pc;
    int next;

    if (!p->got_first) {
        p->got_first = 1;
        if (avctx->extradata_size) {
            ff_h264_decode_extradata(avctx->extradata, avctx->extradata_size,
                                     &p->ps, &p->is_avc, &p->nal_length_size,
                                     avctx->err_recognition, avctx);
        }
    }

    if (s->flags & PARSER_FLAG_COMPLETE_FRAMES) {
        next = buf_size;
    } else {
        next = h264_find_frame_end(p, buf, buf_size, avctx);

        if (ff_combine_frame(pc, next, &buf, &buf_size) < 0) {
            *poutbuf      = NULL;
            *poutbuf_size = 0;
            return buf_size;
        }

        if (next < 0 && next != END_NOT_FOUND) {
            av_assert1(pc->last_index + next >= 0);
            h264_find_frame_end(p, &pc->buffer[pc->last_index + next], -next, avctx); // update state
        }
    }

    parse_nal_units(s, avctx, buf, buf_size);

    if (avctx->framerate.num)
        avctx->time_base = av_inv_q(av_mul_q(avctx->framerate, (AVRational){avctx->ticks_per_frame, 1}));
    if (p->sei.picture_timing.cpb_removal_delay >= 0) {
        s->dts_sync_point    = p->sei.buffering_period.present;
        s->dts_ref_dts_delta = p->sei.picture_timing.cpb_removal_delay;
        s->pts_dts_delta     = p->sei.picture_timing.dpb_output_delay;
    } else {
        s->dts_sync_point    = INT_MIN;
        s->dts_ref_dts_delta = INT_MIN;
        s->pts_dts_delta     = INT_MIN;
    }

    if (s->flags & PARSER_FLAG_ONCE) {
        s->flags &= PARSER_FLAG_COMPLETE_FRAMES;
    }

    if (s->dts_sync_point >= 0) {
        int64_t den = avctx->time_base.den * (int64_t)avctx->pkt_timebase.num;
        if (den > 0) {
            int64_t num = avctx->time_base.num * (int64_t)avctx->pkt_timebase.den;
            if (s->dts != AV_NOPTS_VALUE) {
                // got DTS from the stream, update reference timestamp
                p->reference_dts = s->dts - av_rescale(s->dts_ref_dts_delta, num, den);
            } else if (p->reference_dts != AV_NOPTS_VALUE) {
                // compute DTS based on reference timestamp
                s->dts = p->reference_dts + av_rescale(s->dts_ref_dts_delta, num, den);
            }

            if (p->reference_dts != AV_NOPTS_VALUE && s->pts == AV_NOPTS_VALUE)
                s->pts = s->dts + av_rescale(s->pts_dts_delta, num, den);

            if (s->dts_sync_point > 0)
                p->reference_dts = s->dts; // new reference
        }
    }

    *poutbuf      = buf;
    *poutbuf_size = buf_size;
    return next;
}
static int h264_find_frame_end(H264ParseContext *p, const uint8_t *buf,
                               int buf_size, void *logctx)
{
    int i, j;
    uint32_t state;
    ParseContext *pc = &p->pc;

    int next_avc = p->is_avc ? 0 : buf_size;
//    mb_addr= pc->mb_addr - 1;
    state = pc->state;
    if (state > 13)
        state = 7;

    if (p->is_avc && !p->nal_length_size)
        av_log(logctx, AV_LOG_ERROR, "AVC-parser: nal length size invalid\n");

    for (i = 0; i < buf_size; i++) {
        if (i >= next_avc) {
            int nalsize = 0;
            i = next_avc;
            for (j = 0; j < p->nal_length_size; j++)
                nalsize = (nalsize << 8) | buf[i++];
            if (nalsize <= 0 || nalsize > buf_size - i) {
                av_log(logctx, AV_LOG_ERROR, "AVC-parser: nal size %d remaining %d\n", nalsize, buf_size - i);
                return buf_size;
            }
            next_avc = i + nalsize;
            state    = 5;
        }

        if (state == 7) {
            i += p->h264dsp.startcode_find_candidate(buf + i, next_avc - i);
            if (i < next_avc)
                state = 2;
        } else if (state <= 2) {
            if (buf[i] == 1)
                state ^= 5;            // 2->7, 1->4, 0->5
            else if (buf[i])
                state = 7;
            else
                state >>= 1;           // 2->1, 1->0, 0->0
        } else if (state <= 5) {
            int nalu_type = buf[i] & 0x1F;
            if (nalu_type == H264_NAL_SEI || nalu_type == H264_NAL_SPS ||
                nalu_type == H264_NAL_PPS || nalu_type == H264_NAL_AUD) {
                if (pc->frame_start_found) {
                    i++;
                    goto found;
                }
            } else if (nalu_type == H264_NAL_SLICE || nalu_type == H264_NAL_DPA ||
                       nalu_type == H264_NAL_IDR_SLICE) {
                state += 8;
                continue;
            }
            state = 7;
        } else {
            unsigned int mb, last_mb = p->parse_last_mb;
            GetBitContext gb;
            p->parse_history[p->parse_history_count++] = buf[i];

            init_get_bits(&gb, p->parse_history, 8*p->parse_history_count);
            mb= get_ue_golomb_long(&gb);
            if (get_bits_left(&gb) > 0 || p->parse_history_count > 5) {
                p->parse_last_mb = mb;
                if (pc->frame_start_found) {
                    if (mb <= last_mb) {
                        i -= p->parse_history_count - 1;
                        p->parse_history_count = 0;
                        goto found;
                    }
                } else
                    pc->frame_start_found = 1;
                p->parse_history_count = 0;
                state = 7;
            }
        }
    }
    pc->state = state;
    if (p->is_avc)
        return next_avc;
    return END_NOT_FOUND;

found:
    pc->state             = 7;
    pc->frame_start_found = 0;
    if (p->is_avc)
        return next_avc;
    return i - (state & 5);
}

这里包含了解析器具体类型

static const AVCodecParser * const parser_list[] = {
    &ff_aac_parser,
    &ff_aac_latm_parser,
    &ff_ac3_parser,
    &ff_adx_parser,
    &ff_av1_parser,
    &ff_avs2_parser,
    &ff_bmp_parser,
    &ff_cavsvideo_parser,
    &ff_cook_parser,
    &ff_dca_parser,
    &ff_dirac_parser,
    &ff_dnxhd_parser,
    &ff_dpx_parser,
    &ff_dvaudio_parser,
    &ff_dvbsub_parser,
    &ff_dvdsub_parser,
    &ff_dvd_nav_parser,
    &ff_flac_parser,
    &ff_g723_1_parser,
    &ff_g729_parser,
    &ff_gif_parser,
    &ff_gsm_parser,
    &ff_h261_parser,
    &ff_h263_parser,
    &ff_h264_parser,
    &ff_hevc_parser,
    &ff_mjpeg_parser,
    &ff_mlp_parser,
    &ff_mpeg4video_parser,
    &ff_mpegaudio_parser,
    &ff_mpegvideo_parser,
    &ff_opus_parser,
    &ff_png_parser,
    &ff_pnm_parser,
    &ff_rv30_parser,
    &ff_rv40_parser,
    &ff_sbc_parser,
    &ff_sipr_parser,
    &ff_tak_parser,
    &ff_vc1_parser,
    &ff_vorbis_parser,
    &ff_vp3_parser,
    &ff_vp8_parser,
    &ff_vp9_parser,
    &ff_xma_parser,
    NULL };

上一篇:九宫重排 蓝桥杯c++ 题解 字符串hash+bfs


下一篇:FFMPEG使用参数详解