bzoj 2839 集合计数——二项式反演

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839

设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i 个,则

\( g(i)=C_{n}^{i}*(2^{2^{n-i}}-1) \)

\( g(i)=\sum\limits_{j=i}^{n}C_{j}^{i}f(j) \)

\( f(i)=\sum\limits_{j=i}^{n}(-1)^{j-i}C_{j}^{i}g(j) \)

以为把 g 写出来后 \( C_{n}^{i}*C_{i}^{j} = C_{n}^{j} \) ,然而其实 \( C_{n}^{i}*C_{i}^{j} = C_{n}^{j}*C_{n-j}^{i-j} \) 。

注意指数取模是 mod-1 。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=1e6+,mod=1e9+;
int n,k,g[N],jc[N],jcn[N];
void upd(int &x){x>=mod?x-=mod:;x<?x+=mod:;}
int pw(int x,int k,int md=mod)
{int ret=;while(k){if(k&)ret=(ll)ret*x%md;x=(ll)x*x%md;k>>=;}return ret;}
void init()
{
jc[]=;for(int i=;i<=n;i++)jc[i]=(ll)jc[i-]*i%mod;
jcn[n]=pw(jc[n],mod-);for(int i=n-;i>=;i--)jcn[i]=(ll)jcn[i+]*(i+)%mod;
}
int C(int n,int m)
{return (ll)jc[n]*jcn[m]%mod*jcn[n-m]%mod;}
int main()
{
scanf("%d%d",&n,&k);
init();
int ans=;
for(int i=k,j=;i<=n;i++,j=-j)
ans=(ans+(ll)j*C(i,k)*C(n,i)%mod*(pw(,pw(,n-i,mod-))-))%mod,upd(ans);
printf("%d\n",ans);
return ;
}
上一篇:5.win上安装ES


下一篇:[转帖]Linux 下如何知道是否有人在使坏?