[IOI2008]Island

嘟嘟嘟


一句话题意:求带权基环树森林中每一个联通块的最长路之和,路径为简单路径。


其实这道题不难,只不过是吧好多知识拼接在了一起。
看到基环树,就会想到断环为链,为了能枚举到所有路径,要把链翻倍乘2。


现在得到了一个序列,上面的每一个点表示外向树的树根。
那么一条最长路可能有两种情况:
1.单独在一个外向树内部:
dp一下,维护最长链和次长链即可。
2.起点和终点分别在两棵树内:
还是先dp一下,求出到树根的最长距离。
然后暴力的做法就是\(O(n ^ 2)\)枚举起点终点所在外向树,但这肯定会超时。
考虑dp。令\(f[i]\)表示到根结点\(i\)的最长路,\(dis(i, j)\)表示环上\(i, j\)两点之间的距离(前缀和维护),则很容易搞出

\[dp[i] = max_{j = i - n + 1} ^ {i - 1} (f[j] + dis(i, j)) + f[i] \]

但是这还是\(O(n ^ 2)\)的,于是这也得优化。
单调队列就行啦。
需要注意的是,每一次比较的不仅仅是\(f[i]\),应该是\(f[q[l]] + dis(q[l], i + 1)\)和\(f[i] +dis(i, i + 1)\),因为dp式是这样的嘛。


然后对于每一个联通块,两种情况取max。


耐心点写就行

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("") 
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e6 + 5;
inline ll read()
{
  ll ans = 0;
  char ch = getchar(), last = ' ';
  while(!isdigit(ch)) last = ch, ch = getchar();
  while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
  if(last == '-') ans = -ans;
  return ans;
}
inline void write(ll x)
{
  if(x < 0) x = -x, putchar('-');
  if(x >= 10) write(x / 10);
  putchar(x % 10 + '0');
}

int n;
struct Edge
{
  int nxt, to; ll w;
}e[maxn << 1];
int head[maxn], ecnt = -1;
void addEdge(int x, int y, ll w)
{
  e[++ecnt] = (Edge){head[x], y, w};
  head[x] = ecnt;
}

bool vis[maxn];

struct Node
{
  int E, v;
}st[maxn];
int top = 0;
bool in[maxn], cir[maxn];
int a[maxn], tot = 0;
ll sum[maxn];
void dfs_cir(int now, int _e)
{
  vis[now] = in[now] = 1;
  st[++top] = (Node){_e, now};
  for(int i = head[now], v; i != -1; i = e[i].nxt)
    {
      if(in[v = e[i].to] && (i ^ 1) != _e)
	{
		int j = top;
		for(; st[j].v != v; --j) a[++tot] = st[j].v, sum[tot + 1] = sum[tot] + e[st[j].E].w;
		a[++tot] = st[j].v; sum[tot + 1] = sum[tot] + e[i].w; a[tot + 1] = a[1];
		for(int j = 2; j <= tot; ++j) a[tot + j] = a[j], sum[tot + j] = sum[tot + j - 1] + sum[j] - sum[j - 1]; 
	}
      if(vis[v]) continue; 
      dfs_cir(v, i);
    }
  in[st[top--].v] = 0;
}

ll f[maxn], _ans = 0;
void dfs(int now, int _f)
{
  ll Max1 = 0, Max2 = 0;
  for(int i = head[now], v; i != -1; i = e[i].nxt)
    {
      if((v = e[i].to) == _f || cir[v]) continue;
      dfs(v, now);
      f[now] = max(f[now], f[v] + e[i].w);
      if(f[v] + e[i].w > Max1) Max2 = Max1, Max1 = f[v] + e[i].w;
      else Max2 = max(Max2, f[v] + e[i].w);
    }
  _ans = max(_ans, Max1 + Max2);
}
ll dp[maxn];
int q[maxn], l = 1, r = 0;
ll solve(int now)
{
  top = tot = _ans = 0;
  dfs_cir(now, -1);
  for(int i = 1; i <= tot; ++i) cir[a[i]] = 1;
  for(int i = 1; i <= tot; ++i) dfs(a[i], 0);
  ll Max = 0; q[1] = 0; l = 1; r = 0;
  for(int i = 1; i <= (tot << 1); ++i)
    {
      while(l <= r && i - q[l] >= tot) l++;
      dp[i] = f[a[q[l]]] + f[a[i]] + sum[i] - sum[q[l]];
      while(l <= r && f[a[q[r]]] + sum[i + 1] - sum[q[r]] < sum[i + 1] - sum[i] + f[a[i]]) r--;
      q[++r] = i;
      Max = max(Max, dp[i]);
    }
  return max(_ans, Max);
}

int main()
{
  Mem(head, -1);
  n = read();
  for(int i = 1; i <= n; ++i)
    {
      int y = read(), w = read();
      addEdge(i, y, w); addEdge(y, i, w);
    }
  ll ans = 0;
  for(int i = 1; i <= n; ++i) if(!vis[i]) ans += solve(i);
  write(ans), enter;
  return 0;
} 
上一篇:ZUCC_BB平台-Quiz B-3-7-答案


下一篇:Net Radar for Mac(网络定位软件)