21.11.16模拟 密码安全 BZOJ4750

考虑每个数作为最大值的贡献。
有单调栈求出每个数作为最大值能向左向右扩展的区间,为了避免重复计算,我们让每个区间的最右边的最大值来当最大值计算

对于异或的处理,我们用前缀异或和的异或来表示一个区间的异或
即sum[l...r]=sum[r]^sum[l-1]
异或进行拆位处理,一个区间的异或的第k位为1,就是sum[l-1]和sum[r]的第k位的数字不同
然后细节看代码吧

const int N = 1e5 + 79;
const int mod = 1e9 + 61;
#define int long long
int n;
lxl a[N], sum[N];
int L[N], R[N];
int top, s[N];
int sm[N];
inline lxl calc(int p) {
	lxl ans(0);
	rep(i, 1, n) {
		sm[i] = sm[i - 1] + ( (sum[i] >> p) & 1);
	}
	rep(i, 1, n) {
		lxl l = i - L[i] + 1;
		lxl r = R[i] - i + 1;
		lxl w = sm[i - 1] - sm[max(0ll, L[i] - 2)];//左边1的个数
		lxl t = sm[R[i]] - sm[i - 1];//右边1的个数
		ans = (ans + w * (r - t) % mod * a[i]) % mod;//左边1的个数*右边0的个数
		ans = (ans + t * (l - w) % mod * a[i]) % mod;//右边1的个数*左边0的个数
	}
	return ans;
}

main() {
	freopen("pwd.in", "r", stdin);
	freopen("pwd.out", "w", stdout);
	int T(0);
	read(T);
	while(T--) {
		read(n);
		rep(i, 1, n) {
			read(a[i]);
			sum[i] = sum[i - 1] ^ a[i];
		}
		lxl ans(0);

		a[0] = a[n + 1] = 3e9;
		s[top = 1] = 0;
		rep(i, 1, n) {
			while(a[s[top]] < a[i]) {
				--top;
			}
			L[i] = s[top] + 1;
			s[++top] = i;
		}
		s[top = 1] = n + 1;
		drp(i, n, 1) {
			while(a[s[top]] <= a[i]) {
				--top;
			}
			R[i] = s[top] - 1;
			s[++top] = i;
		}
		rep(i, 0, 60) {
			ans = (ans + calc(i) * (1ll << i) % mod) % mod;
		}
		out(ans, '\n');
	}
	return 0;
}
上一篇:仿照MEMZ做一个特效程序


下一篇:操作sql - 类型初始值设定项引发异常