传送
这题的题解太妙了,虽然是dp,但从头到尾没一步是在我意料之内的……
一句话题意:给一个\(n\),\(q\)组询问,每次让求\(\sum_{i=1}^{n} C_{3i}^x \ \ \textrm{mod} \ \ 10^9+7\).(\(1 \leqslant n \leqslant 10^6, 1 \leqslant q \leqslant 2 * 10^5\))
咋dp的呢?
令\(dp[x][m]=\sum\limits_{i=0}^{n - 1} C_{3i+m}^x(m = 0,1,2)\).那么\(ans[x] = dp[x][0]+C_{3n}^x\).
而\(\sum\limits_{m=0}^2dp[x][m]=\sum\limits_{i=0}^{n-1}(C_{3i}^x+C_{3i+1}^x+C_{3i+2}^x)=\sum\limits_{i=0}^{3n-1}C_i^x\).因为这三项相加相当于将所有\(i\in[1,3n-1]\)都访问过了。
接下来,根据\(\textrm{Hockey-Stick Identity}\),有\(\sum\limits_{i=0}^{3n-1}C_i^x = C_{3n}^{x+1}\).(其实这一步不知道也行,预处理出来就好了)
于是就有\(dp[x][0]+dp[x][1]+dp[x][2] = C_{3n}^{x+1} \ \ (1)\).
又根据杨辉三角,能得出关系式:
\(dp[x][1] = dp[x][0]+dp[x - 1][0] \ \ (2)\),
\(dp[x][2] = dp[x][1] + dp[x - 1][1] \ \ (3)\).
最后将\((1)(2)(3)\)联立,就能解得递推式
边界条件:\(dp[0][0] = dp[0][1] = dp[0][2] = 0\).
时间复杂度\(O(n+q)\).
太妙了。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<queue>
#include<assert.h>
#include<ctime>
using namespace std;
#define enter puts("")
#define space putchar(‘ ‘)
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
#define forE(i, x, y) for(int i = head[x], y; ~i && (y = e[i].to); i = e[i].nxt)
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 3e6 + 5;
const ll mod = 1e9 + 7;
In ll read()
{
ll ans = 0;
char ch = getchar(), las = ‘ ‘;
while(!isdigit(ch)) las = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - ‘0‘, ch = getchar();
if(las == ‘-‘) ans = -ans;
return ans;
}
In void write(ll x)
{
if(x < 0) x = -x, putchar(‘-‘);
if(x >= 10) write(x / 10);
putchar(x % 10 + ‘0‘);
}
In ll ADD(ll a, ll b) {return a + b < mod ? a + b : a + b - mod;}
In ll quickpow(ll a, ll b)
{
ll ret = 1;
for(; b; b >>= 1, a = a * a % mod)
if(b & 1) ret = ret * a % mod;
return ret;
}
int n, m, Q;
ll f[maxn], inv[maxn], dp[maxn][3], inv3;
In ll C(int n, int m) {return f[n] * inv[m] % mod * inv[n - m] % mod;}
In void init()
{
inv3 = quickpow(3, mod - 2);
f[0] = inv[0] = 1;
for(int i = 1; i <= m; ++i) f[i] = f[i - 1] * i % mod;
inv[m] = quickpow(f[m], mod - 2);
for(int i = m - 1; i; --i) inv[i] = inv[i + 1] * (i + 1) % mod;
dp[0][0] = dp[0][1] = dp[0][2] = n;
for(int i = 1; i <= m; ++i)
{
ll c = C(m, i + 1);
dp[i][0] = ADD(ADD(c, mod - dp[i - 1][0] * 2 % mod), mod - dp[i - 1][1]) * inv3 % mod;
dp[i][1] = ADD(ADD(c, dp[i - 1][0]), mod - dp[i - 1][1]) * inv3 % mod;
dp[i][2] = ADD(ADD(c, dp[i - 1][0]), dp[i - 1][1] * 2 % mod) * inv3 % mod;
}
}
int main()
{
n = read(), Q = read(); m = n * 3;
init();
for(int i = 1; i <= Q; ++i)
{
int x = read();
write(ADD(dp[x][0], C(m, x))), enter;
}
return 0;
}