用java写bp神经网络(一)

根据前篇博文《神经网络之后向传播算法》,现在用java实现一个bp神经网络。矩阵运算采用jblas库,然后逐渐增加功能,支持并行计算,然后支持输入向量调整,最后支持L-BFGS学习算法。

上帝说,要有神经网络,于是,便有了一个神经网络。上帝还说,神经网络要有节点,权重,激活函数,输出函数,目标函数,然后也许还要有一个准确率函数,于是,神经网络完成了:

public class Net {
List<DoubleMatrix> weights = new ArrayList<DoubleMatrix>();
List<DoubleMatrix> bs = new ArrayList<>();
List<ScalarDifferentiableFunction> activations = new ArrayList<>();
CostFunctionFactory costFunc;
CostFunctionFactory accuracyFunc;
int[] nodesNum;
int layersNum;
public Net(int[] nodesNum, ScalarDifferentiableFunction[] activations,CostFunctionFactory costFunc) {
super();
this.initNet(nodesNum, activations);
this.costFunc=costFunc;
this.layersNum=nodesNum.length-1;
} public Net(int[] nodesNum, ScalarDifferentiableFunction[] activations,CostFunctionFactory costFunc,CostFunctionFactory accuracyFunc) {
this(nodesNum,activations,costFunc);
this.accuracyFunc=accuracyFunc;
}
public void resetNet() {
this.initNet(nodesNum, (ScalarDifferentiableFunction[]) activations.toArray());
} private void initNet(int[] nodesNum, ScalarDifferentiableFunction[] activations) {
assert (nodesNum != null && activations != null
&& nodesNum.length == activations.length + 1 && nodesNum.length > 1);
this.nodesNum = nodesNum;
this.weights.clear();
this.bs.clear();
this.activations.clear();
for (int i = 0; i < nodesNum.length - 1; i++) {
// 列数==输入;行数==输出。
int columns = nodesNum[i];
int rows = nodesNum[i + 1];
double r1 = Math.sqrt(6) / Math.sqrt(rows + columns + 1);
//r1=0.001;
// W
DoubleMatrix weight = DoubleMatrix.rand(rows, columns).muli(2*r1).subi(r1);
//weight=DoubleMatrix.ones(rows, columns);
weights.add(weight); // b
DoubleMatrix b = DoubleMatrix.zeros(rows, 1);
bs.add(b); // activations
this.activations.add(activations[i]);
}
}
}

上帝造完了神经网络,去休息了。人说,我要使用神经网络,我要利用正向传播计算各层的结果,然后利用反向传播调整网络的状态,最后,我要让它能告诉我猎物在什么方向,花儿为什么这样香。

public class Propagation {
Net net; public Propagation(Net net) {
super();
this.net = net;
} // 多个样本。
public ForwardResult forward(DoubleMatrix input) { ForwardResult result = new ForwardResult();
result.input = input;
DoubleMatrix currentResult = input;
int index = -1;
for (DoubleMatrix weight : net.weights) {
index++;
DoubleMatrix b = net.bs.get(index);
final ScalarDifferentiableFunction activation = net.activations
.get(index);
currentResult = weight.mmul(currentResult).addColumnVector(b);
result.netResult.add(currentResult); // 乘以导数
DoubleMatrix derivative = MatrixUtil.applyNewElements(
new ScalarFunction() {
@Override
public double valueAt(double x) {
return activation.derivativeAt(x);
} }, currentResult); currentResult = MatrixUtil.applyNewElements(activation,
currentResult);
result.finalResult.add(currentResult); result.derivativeResult.add(derivative);
} result.netResult=null;// 不再需要。 return result;
} // 多个样本梯度平均值。
public BackwardResult backward(DoubleMatrix target,
ForwardResult forwardResult) {
BackwardResult result = new BackwardResult();
DoubleMatrix cost = DoubleMatrix.zeros(1,target.columns);
DoubleMatrix output = forwardResult.finalResult
.get(forwardResult.finalResult.size() - 1);
DoubleMatrix outputDelta = DoubleMatrix.zeros(output.rows,
output.columns);
DoubleMatrix outputDerivative = forwardResult.derivativeResult
.get(forwardResult.derivativeResult.size() - 1); DoubleMatrix accuracy = null;
if (net.accuracyFunc != null) {
accuracy = DoubleMatrix.zeros(1,target.columns);
} for (int i = 0; i < target.columns; i++) {
CostFunction costFunc = net.costFunc.create(target.getColumn(i)
.toArray());
cost.put(i, costFunc.valueAt(output.getColumn(i).toArray()));
// System.out.println(i);
DoubleMatrix column1 = new DoubleMatrix(
costFunc.derivativeAt(output.getColumn(i).toArray()));
DoubleMatrix column2 = outputDerivative.getColumn(i);
outputDelta.putColumn(i, column1.muli(column2)); if (net.accuracyFunc != null) {
CostFunction accuracyFunc = net.accuracyFunc.create(target
.getColumn(i).toArray());
accuracy.put(i,
accuracyFunc.valueAt(output.getColumn(i).toArray()));
}
}
result.deltas.add(outputDelta);
result.cost = cost;
result.accuracy = accuracy;
for (int i = net.layersNum - 1; i >= 0; i--) {
DoubleMatrix pdelta = result.deltas.get(result.deltas.size() - 1); // 梯度计算,取所有样本平均
DoubleMatrix layerInput = i == 0 ? forwardResult.input
: forwardResult.finalResult.get(i - 1);
DoubleMatrix gradient = pdelta.mmul(layerInput.transpose()).div(
target.columns);
result.gradients.add(gradient);
// 偏置梯度
result.biasGradients.add(pdelta.rowMeans()); // 计算前一层delta,若i=0,delta为输入层误差,即input调整梯度,不作平均处理。
DoubleMatrix delta = net.weights.get(i).transpose().mmul(pdelta);
if (i > 0)
delta = delta.muli(forwardResult.derivativeResult.get(i - 1));
result.deltas.add(delta);
}
Collections.reverse(result.gradients);
Collections.reverse(result.biasGradients); //其它的delta都不需要。
DoubleMatrix inputDeltas=result.deltas.get(result.deltas.size()-1);
result.deltas.clear();
result.deltas.add(inputDeltas); return result;
} public Net getNet() {
return net;
} }

上面是一次正向/反向传播的具体代码。训练方式为批量训练,即所有样本一起训练。然而我们可以传入只有一列的input/target样本实现adapt方式的串行训练,也可以把样本分成很多批传入实现mini-batch方式的训练,这,不是Propagation要考虑的事情,它只是忠实的把传入的数据正向过一遍,反向过一遍,然后把过后的数据原封不动的返回给你。至于传入什么,以及结果怎么运用,是Trainer和Learner要做的事情。下回分解。

上一篇:sciense


下一篇:Python 图片转字符画