R-大数据分析挖掘(3-R作图)

R语言绘图功能:

  提供实例:

  demo(graphics)

R-大数据分析挖掘(3-R作图)

  demo(persp)

R-大数据分析挖掘(3-R作图)

(二)绘图函数

R-大数据分析挖掘(3-R作图)

R-大数据分析挖掘(3-R作图)

R-大数据分析挖掘(3-R作图)

R-大数据分析挖掘(3-R作图)

(三)R内置数据集

R-大数据分析挖掘(3-R作图)

R-大数据分析挖掘(3-R作图)

如:

R-大数据分析挖掘(3-R作图)

R-大数据分析挖掘(3-R作图)

Iris(鸢尾花)数据集

R-大数据分析挖掘(3-R作图)

R-大数据分析挖掘(3-R作图)

(四)散点图

散点图的作用:

散点图表示因变量随自变量而变化的大致趋势
,据此可以选择合适的函数对数据点进行拟合

R-大数据分析挖掘(3-R作图)

R-大数据分析挖掘(3-R作图)

散点图集

R-大数据分析挖掘(3-R作图)

R-大数据分析挖掘(3-R作图)

(五)条形图

R-大数据分析挖掘(3-R作图)

实例:

t=c(.20,.20,.60,.20,.30,.50,.10,.30,.6);

dim(t)=c(3,3);

barplot(t,beside=TRUE,xlab="城市",ylab="比例",legend.text=c("高中及以
下","大专","本科及以上"),names.arg=c("上海","广州","北京"));

R-大数据分析挖掘(3-R作图)

(六)饼图和箱线图

R-大数据分析挖掘(3-R作图)

R-大数据分析挖掘(3-R作图)

箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图

boxplot(x[2:4],col=c("red","green","blue"),notch=T)

R-大数据分析挖掘(3-R作图)

(七)折线图

折线图

a=c(2,3,4,5,6)

b=c(4,7,8,9,12)

plot(a,b,type="l")

R-大数据分析挖掘(3-R作图)

多条曲线的效果

plot(rain$Tokyo,type="l",col="red",ylim=c(0,300),main="Monthly Rainfall in major cities",xlab="Month of Year",ylab="Rainfall (mm)",lwd=2)
lines(rain$NewYork,type="l",col="blue",lwd=2)
lines(rain$London,type="l",col="green",lwd=2)
lines(rain$Berlin,type="l",col="orange",lwd=2)

R-大数据分析挖掘(3-R作图)

热力图:

heatmap(as.matrix(mtcars),Rowv=NA,Colv=NA,col = heat.colors(256),scale="column",margins=c(2,8),main = "Car characteristics byModel")

R-大数据分析挖掘(3-R作图)

地图

library(maps)
• map("state", interior = FALSE)
• map("state", boundary = FALSE,
col="red",add = TRUE)
• map('world', fill =
TRUE,col=heat.colors(10))

R-大数据分析挖掘(3-R作图)

R-大数据分析挖掘(3-R作图)

R实验:社交数据可视化

R-大数据分析挖掘(3-R作图)

通过设置坐标范围使焦点集中在美国周边,并且设置一些有关颜色

xlim <- c(-171.738281, -56.601563)
ylim <- c(12.039321,71.856229)
map("world", col="#f2f2f2",fill=TRUE, bg="white",lwd=0.05, xlim=xlim,ylim=ylim)

如下图:

  R-大数据分析挖掘(3-R作图)

lat_ca <- 39.164141
lon_ca <- -121.64062
lat_me <- 45.21300
lon_me <- -68.906250

inter <-gcIntermediate(c(lon_ca, lat_ca), c(lon_me,lat_me), n=50,addStartEnd=TRUE)
lines(inter)

R-大数据分析挖掘(3-R作图)

lat_tx <- 29.954935
lon_tx <- -98.701172
inter2 <-gcIntermediate(c(lon_ca, lat_ca), c(lon_tx, lat_tx),n=50,addStartEnd=TRUE)
lines(inter2, col="red")

R-大数据分析挖掘(3-R作图)

airports <- read.csv("http://datasets.flowingdata.com/tuts/maparcs/airports.csv",header=TRUE)
flights <- read.csv("http://datasets.flowingdata.com/tuts/maparcs/flights.csv",header=TRUE, as.is=TRUE)

map("world", col="#f2f2f2", fill=TRUE, bg="white", lwd=0.05, xlim=xlim, ylim=ylim)

fsub <- flights[flights$airline == "AA",]
for (j in 1:length(fsub$airline)) {
    air1 <- airports[airports$iata == fsub[j,]$airport1,]
    air2 <- airports[airports$iata == fsub[j,]$airport2,]
    inter <- gcIntermediate(c(air1[1,]$long, air1[1,]$lat), c(air2[1,]$long, air2[1,]$lat), n=100,
    addStartEnd=TRUE)
    lines(inter, col="black", lwd=0.8)

}

R-大数据分析挖掘(3-R作图)

(作图完结)

上一篇:OS之内存管理 --- 虚拟内存管理(二)


下一篇:Acwing272 最长公共上升子序列