我们一般使用ALOGD来打印log,所以这里就跟一下ALOGD的flow
system/core/include/log/log.h
system/core/include/log/log.h
#ifndef ALOGD #define ALOGD(...) ((void)ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)) #endif #ifndef ALOG #define ALOG(priority, tag, ...) LOG_PRI(ANDROID_##priority, tag, __VA_ARGS__) #endif #ifndef LOG_PRI #define LOG_PRI(priority, tag, ...) android_printLog(priority, tag, __VA_ARGS__) #endif #define android_printLog(prio, tag, fmt...) \ __android_log_print(prio, tag, fmt)
这里有发现ALOGD其实是一系列宏,最终会调用到 __android_log_print(prio, tag, fmt),这个函数带三个参数:
1,优先级,这个就是我们平时说的log level,ALOGD的log level是LOG_DEBUG;
2,tag,这个就是我们在code里面指定的LOG_TAG
3,__VA_ARGS__,这个就是我们常见的格式化输入了,也就是说我们ALOGD带的参数可以使用格式化的格式
关于__android_log_print的具体实现如下:
system/core/liblog/logd_write.c
int __android_log_print(int prio, const char *tag, const char *fmt, ...) { va_list ap; char buf[LOG_BUF_SIZE]; va_start(ap, fmt); vsnprintf(buf, LOG_BUF_SIZE, fmt, ap); va_end(ap); return __android_log_write(prio, tag, buf); }这里可以看到格式化的输入被转化成buf的字符数组了,然后buf作为第三个参数调用__android_log_write
关于__android_log_write的具体实现如下:
int __android_log_write(int prio, const char *tag, const char *msg) { struct iovec vec[3]; log_id_t log_id = LOG_ID_MAIN; char tmp_tag[32]; if (!tag) tag = ""; /* XXX: This needs to go! */ if (!strcmp(tag, "HTC_RIL") || !strncmp(tag, "RIL", 3) || /* Any log tag with "RIL" as the prefix */ !strncmp(tag, "IMS", 3) || /* Any log tag with "IMS" as the prefix */ !strcmp(tag, "AT") || !strcmp(tag, "GSM") || !strcmp(tag, "STK") || !strcmp(tag, "CDMA") || !strcmp(tag, "PHONE") || !strcmp(tag, "SMS")) { log_id = LOG_ID_RADIO; // Inform third party apps/ril/radio.. to use Rlog or RLOG snprintf(tmp_tag, sizeof(tmp_tag), "use-Rlog/RLOG-%s", tag); tag = tmp_tag; } vec[0].iov_base = (unsigned char *) &prio; vec[0].iov_len = 1; vec[1].iov_base = (void *) tag; vec[1].iov_len = strlen(tag) + 1; vec[2].iov_base = (void *) msg; vec[2].iov_len = strlen(msg) + 1; return write_to_log(log_id, vec, 3); }可以看到priority,tag,msg三个参数分别填充到了iovec的struct中,
iovec是io vetor,与readv和writev相关的一种struct,readv和readv是高级I/O,这里不做深入解释,
大家只需要知道调用者传进来的参数按照固定的格式填充到了iovec中,最后调用write_to_log(log_id, vec, 3);
这里大家可以看一下write_to_log的具体实现:
static int (*write_to_log)(log_id_t, struct iovec *vec, size_t nr) = __write_to_log_init;可以发现write_to_log是一个函数指针,初始化为__write_to_log_init
但是write_to_log在init的时候被赋值成__write_to_log_kernel
static int __write_to_log_init(log_id_t log_id, struct iovec *vec, size_t nr) { #ifdef HAVE_PTHREADS pthread_mutex_lock(&log_init_lock); #endif if (write_to_log == __write_to_log_init) { log_fds[LOG_ID_MAIN] = log_open("/dev/"LOGGER_LOG_MAIN, O_WRONLY); log_fds[LOG_ID_RADIO] = log_open("/dev/"LOGGER_LOG_RADIO, O_WRONLY); log_fds[LOG_ID_EVENTS] = log_open("/dev/"LOGGER_LOG_EVENTS, O_WRONLY); log_fds[LOG_ID_SYSTEM] = log_open("/dev/"LOGGER_LOG_SYSTEM, O_WRONLY); write_to_log = __write_to_log_kernel;
我们接下来看一下__write_to_log_kernel的具体实现
static int __write_to_log_kernel(log_id_t log_id, struct iovec *vec, size_t nr) { ssize_t ret; int log_fd; if (/*(int)log_id >= 0 &&*/ (int)log_id < (int)LOG_ID_MAX) { log_fd = log_fds[(int)log_id]; } else { return EBADF; } do { ret = log_writev(log_fd, vec, nr); } while (ret < 0 && errno == EINTR); return ret; }可以看到是调用了log_writev(log_fd, vec, nr),这里的三个参数分别是:
1,log_fd,也就是我们ALOGD产生的log所需要写入的fd,这里是/dev/log/main,/dev/log/radio/,dev/log/event,/dev/log/system等文件
2,vec,这个就是包含了priority,tag,msg等信息的iovec,专门供readv和wirtev使用的struct
3:nr,这里应该是vec结构体数组的个数,这里是3个,分别填充了priority,tag,msg
#if FAKE_LOG_DEVICE // This will be defined when building for the host. #define log_open(pathname, flags) fakeLogOpen(pathname, flags) #define log_writev(filedes, vector, count) fakeLogWritev(filedes, vector, count) #define log_close(filedes) fakeLogClose(filedes) #else #define log_open(pathname, flags) open(pathname, (flags) | O_CLOEXEC) #define log_writev(filedes, vector, count) writev(filedes, vector, count) #define log_close(filedes) close(filedes) #endif看到了吧,这里就是用writev把vec里面填充的内容按固定格式写到log_fd对应的路径了,至此ALOGD所要打印的msg被写入到了/dev/log/main等路径了
接下来我们看一下logcat的flow,为什么在终端输入logcat之后,log信息就会被打印到终端之上
首先我们需要解释下,为什么printf无法打印信息到终端:
system/core/init/init.c
static void open_console() { int fd; if ((fd = open(console_name, O_RDWR)) < 0) { fd = open("/dev/null", O_RDWR); } ioctl(fd, TIOCSCTTY, 0); dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); }
原来init进程在启动的时候把0,1,2等三个fd都定向到了/dev/null,所以我们printf输出给stdout(也就是fd 1)都丢给了/dev/null,这样子也就不会有信息了
android官方给出的解释如下(system/core/init/readme.txt):
By default, programs executed by init will drop stdout and stderr into
/dev/null. To help with debugging, you can execute your program via the
Andoird program logwrapper. This will redirect stdout/stderr into the
Android logging system (accessed via logcat).
system/core/logcat/logcat.cpp
先从logcat的main函数走起,首先会遇到一个重要的地方
if (!devices) { devices = new log_device_t(strdup("/dev/"LOGGER_LOG_MAIN), false, 'm'); android::g_devCount = 1; int accessmode = (mode & O_RDONLY) ? R_OK : 0 | (mode & O_WRONLY) ? W_OK : 0; // only add this if it's available if (0 == access("/dev/"LOGGER_LOG_SYSTEM, accessmode)) { devices->next = new log_device_t(strdup("/dev/"LOGGER_LOG_SYSTEM), false, 's'); android::g_devCount++; } }这里我们有发现logcat使用/dev/log/main和/dev/log/system两个路径作为device,这里g_devCount的值是2
接下来会设置output的路径,这里很重要,直接关联到log的输出,我们发现可以输出到STDOUT_FILENO,也可以是系统指定的参数,这个是-f所指定的,关于-f的作用,可以使用help文档确认一下
static void setupOutput() { if (g_outputFileName == NULL) { g_outFD = STDOUT_FILENO; } else { struct stat statbuf; g_outFD = openLogFile (g_outputFileName); if (g_outFD < 0) { perror ("couldn't open output file"); exit(-1); } fstat(g_outFD, &statbuf); g_outByteCount = statbuf.st_size; } }一般我们直接使用logcat的时候,g_outFD所对应的输出设备就是我们的终端,这也就是为什么logcat可以把log打印到终端
最后是一个很重要的地方,这里用select的机制去查询/dev/log/main和/dev/log/system两个路径是否有log信息可以打印,
如果有的话就打印到终端,如果没有的话就sleep 5ms,这里的时间是select函数的最后一个参数指定的
static void readLogLines(log_device_t* devices) { log_device_t* dev; int max = 0; int ret; int queued_lines = 0; bool sleep = false; int result; fd_set readset; for (dev=devices; dev; dev = dev->next) { if (dev->fd > max) { max = dev->fd; } } while (1) { do { timeval timeout = { 0, 5000 /* 5ms */ }; // If we oversleep it's ok, i.e. ignore EINTR. FD_ZERO(&readset); for (dev=devices; dev; dev = dev->next) { FD_SET(dev->fd, &readset); } result = select(max + 1, &readset, NULL, NULL, sleep ? NULL : &timeout); } while (result == -1 && errno == EINTR); if (result >= 0) { for (dev=devices; dev; dev = dev->next) { if (FD_ISSET(dev->fd, &readset)) { queued_entry_t* entry = new queued_entry_t(); /* NOTE: driver guarantees we read exactly one full entry */ ret = read(dev->fd, entry->buf, LOGGER_ENTRY_MAX_LEN); if (ret < 0) { if (errno == EINTR) { delete entry; goto next; } if (errno == EAGAIN) { delete entry; break; } perror("logcat read"); exit(EXIT_FAILURE); } else if (!ret) { fprintf(stderr, "read: Unexpected EOF!\n"); exit(EXIT_FAILURE); } else if (entry->entry.len != ret - sizeof(struct logger_entry)) { fprintf(stderr, "read: unexpected length. Expected %d, got %d\n", entry->entry.len, ret - sizeof(struct logger_entry)); exit(EXIT_FAILURE); entry->entry.msg[entry->entry.len] = '\0'; dev->enqueue(entry); ++queued_lines; } } if (result == 0) { // we did our short timeout trick and there's nothing new // print everything we have and wait for more data sleep = true; while (true) { chooseFirst(devices, &dev); if (dev == NULL) { break; } if (g_tail_lines == 0 || queued_lines <= g_tail_lines) { printNextEntry(dev); } else { skipNextEntry(dev); } --queued_lines; } // the caller requested to just dump the log and exit if (g_nonblock) { return; } } else { // print all that aren't the last in their list sleep = false; while (g_tail_lines == 0 || queued_lines > g_tail_lines) { chooseFirst(devices, &dev); if (dev == NULL || dev->queue->next == NULL) { break; } if (g_tail_lines == 0) { printNextEntry(dev); } else { skipNextEntry(dev); } --queued_lines; } } } next: ; } }
可以看到在result>0的时候,也就是select在判断/dev/log/main和/dev/log/system两个路径中有任意一个是readable的话,就去执行如下函数
static void printNextEntry(log_device_t* dev) { maybePrintStart(dev); if (g_printBinary) { printBinary(&dev->queue->entry); } else { processBuffer(dev, &dev->queue->entry); } skipNextEntry(dev); } static void skipNextEntry(log_device_t* dev) { maybePrintStart(dev); queued_entry_t* entry = dev->queue; dev->queue = entry->next; delete entry; }
这里就会把/dev/log/main或者/dev/log/system中读到的信息(也就是前面用ALOGD存入的信息)打印到g_outFD所对应的设备上,默认的话就是终端
static void maybePrintStart(log_device_t* dev) { if (!dev->printed) { dev->printed = true; if (g_devCount > 1 && !g_printBinary) { char buf[1024]; snprintf(buf, sizeof(buf), "--------- beginning of %s\n", dev->device); if (write(g_outFD, buf, strlen(buf)) < 0) { perror("output error"); exit(-1); } } } }
到这里logcat的整个流程已经完毕,希望对大家有所帮助