Description
HH有一串由各种漂亮的贝壳组成的项链。HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义。HH不断地收集新的贝壳,因此, 他的项链变得越来越长。有一天,他突然提出了一个问题:某一段贝壳中,包含了多少种不同 的贝壳?这个问题很难回答。。。因为项链实在是太长了。于是,他只好求助睿智的你,来解 决这个问题。
Input
第一行:一个整数N,表示项链的长度。 第二行:N个整数,表示依次表示项链中贝壳的编号(编号为0到1000000之间的整数)。 第三行:一个整数M,表示HH询问的个数。 接下来M行:每行两个整数,L和R(1 ≤ L ≤ R ≤ N),表示询问的区间。
Output
M行,每行一个整数,依次表示询问对应的答案。
Sample Input
6
1 2 3 4 3 5
3
1 2
3 5
2 6
1 2 3 4 3 5
3
1 2
3 5
2 6
Sample Output
2
2
4
2
4
HINT
对于20%的数据,N ≤ 100,M ≤ 1000;
对于40%的数据,N ≤ 3000,M ≤ 200000;
对于100%的数据,N ≤ 50000,M ≤ 200000。
题解:
用last[i]记录上一个与i号贝壳相同的贝壳所在位置。对于一段区间[l,r],求出其中满足last[i]<l的i的个数,即为答案。
用线段树记录last为0~n-1的贝壳的个数,因为每加入一个贝壳,只会改变last[0~n-1]中的一个,所以可以用可持久化线段树维护。
代码:
var
i,j,k,n,m,cnt,xx,yy:longint;
pre,root:array[..]of longint;
last:array[..]of longint;
t:array[..,-..]of longint;
function qq(x,l,r:longint):longint;
var ll,rr:longint;
begin
if(t[x,]=l)and(t[x,]=r)then exit(t[x,]);
ll:=t[x,-]; rr:=t[x,-];
if r<=(t[x,]+t[x,])div then exit(qq(ll,l,r));
if l>(t[x,]+t[x,])div then exit(qq(rr,l,r));
exit(qq(ll,l,t[ll,])+qq(rr,t[rr,],r));
end;
procedure build(l,r,x:longint);
var k:longint;
begin
k:=cnt; t[k,]:=l; t[k,]:=r;
if l=r then begin if l=x then t[k,]:=; exit; end;
inc(cnt); t[k,-]:=cnt; build(l,(l+r)div ,x);
inc(cnt); t[k,-]:=cnt; build(((l+r)div )+,r,x);
t[k,]:=t[t[k,-],]+t[t[k,-],];
end;
procedure newtree(l,r,x,y:longint);
var k:longint;
begin
k:=cnt; t[k,]:=l; t[k,]:=r;
if l=r then begin t[k,]:=t[y,]; if l=x then inc(t[k,]); exit; end;
if x<=(l+r)div then
begin
t[k,-]:=t[y,-];
inc(cnt); t[k,-]:=cnt; newtree(l,(l+r)div ,x,t[y,-]);
end else
begin
t[k,-]:=t[y,-];
inc(cnt); t[k,-]:=cnt; newtree(((l+r)div )+,r,x,t[y,-]);
end;
t[k,]:=t[t[k,-],]+t[t[k,-],];
end;
begin
readln(n);
for i:= to n do
begin
read(j); pre[i]:=last[j]; last[j]:=i;
end;
root[]:=; cnt:=;
build(,n,pre[]);
for i:= to n do
begin
inc(cnt); root[i]:=cnt;
newtree(,n,pre[i],root[i-]);
end;
readln(m);
for i:= to m do
begin
readln(j,k);
if j= then xx:= else xx:=qq(root[j-],,j-);
if k= then yy:= else yy:=qq(root[k],,j-);
writeln(yy-xx);
end;
end.