You are given an array of positive integers arr
. Perform some operations (possibly none) on arr
so that it satisfies these conditions:
- The value of the first element in
arr
must be1
. - The absolute difference between any 2 adjacent elements must be less than or equal to
1
. In other words,abs(arr[i] - arr[i - 1]) <= 1
for eachi
where1 <= i < arr.length
(0-indexed).abs(x)
is the absolute value ofx
.
There are 2 types of operations that you can perform any number of times:
- Decrease the value of any element of
arr
to a smaller positive integer. - Rearrange the elements of
arr
to be in any order.
Return the maximum possible value of an element in arr
after performing the operations to satisfy the conditions.
Example 1:
Input: arr = [2,2,1,2,1] Output: 2 Explanation: We can satisfy the conditions by rearrangingarr
so it becomes[1,2,2,2,1]
. The largest element inarr
is 2.
Example 2:
Input: arr = [100,1,1000] Output: 3 Explanation: One possible way to satisfy the conditions is by doing the following: 1. Rearrangearr
so it becomes[1,100,1000]
. 2. Decrease the value of the second element to 2. 3. Decrease the value of the third element to 3. Nowarr = [1,2,3], which
satisfies the conditions. The largest element inarr is 3.
Example 3:
Input: arr = [1,2,3,4,5] Output: 5 Explanation: The array already satisfies the conditions, and the largest element is 5.
Constraints:
1 <= arr.length <= 105
1 <= arr[i] <= 109
减小和重新排列数组后的最大元素。
给你一个正整数数组 arr 。请你对 arr 执行一些操作(也可以不进行任何操作),使得数组满足以下条件:
arr 中 第一个 元素必须为 1 。
任意相邻两个元素的差的绝对值 小于等于 1 ,也就是说,对于任意的 1 <= i < arr.length (数组下标从 0 开始),都满足 abs(arr[i] - arr[i - 1]) <= 1 。abs(x) 为 x 的绝对值。
你可以执行以下 2 种操作任意次:减小 arr 中任意元素的值,使其变为一个 更小的正整数 。
重新排列 arr 中的元素,你可以以任意顺序重新排列。
请你返回执行以上操作后,在满足前文所述的条件下,arr 中可能的 最大值 。来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-element-after-decreasing-and-rearranging
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路是贪心 + 排序。首先,排序了才能起码保证数组是非递减或者起码不是乱序的,同时只有排序了才能知道第一个元素是否是 1。从第二个元素开始,如果他与之前一个元素的差的绝对值大于 1 了,那么我们就试图改动那个较大的元素。最后返回数组的最后一个元素即可。
时间O(nlogn)
空间O(1)
Java实现
1 class Solution { 2 public int maximumElementAfterDecrementingAndRearranging(int[] arr) { 3 Arrays.sort(arr); 4 if (arr[0] != 1) { 5 arr[0] = 1; 6 } 7 for (int i = 1; i < arr.length; i++) { 8 if (Math.abs(arr[i] - arr[i - 1]) > 1) { 9 arr[i] = arr[i - 1] + 1; 10 } 11 } 12 return arr[arr.length - 1]; 13 } 14 }