/* * These are the functions you'll usually want to call * They take string arguments and return either hex or base-64 encoded strings */ export default class sha1{
/* hex output format. 0 - lowercase; 1 - uppercase */ static hexcase(){ return 0; } /* base-64 pad character. "=" for strict RFC compliance */ static b64pad(){ return ""; } /* bits per input character. 8 - ASCII; 16 - Unicode */ static chrsz(){ return 8; }
static hex_sha1(s) { return sha1.binb2hex(sha1.core_sha1(sha1.str2binb(s), s.length * sha1.chrsz())); } static b64_sha1(s) { return sha1.binb2b64(sha1.core_sha1(sha1.str2binb(s), s.length * sha1.chrsz())); } static str_sha1(s) { return sha1.binb2str(sha1.core_sha1(sha1.str2binb(s), s.length * sha1.chrsz())); } static hex_hmac_sha1(key, data) { return sha1.binb2hex(sha1.core_hmac_sha1(key, data)); } static b64_hmac_sha1(key, data) { return sha1.binb2b64(sha1.core_hmac_sha1(key, data)); } static str_hmac_sha1(key, data) { return sha1.binb2str(sha1.core_hmac_sha1(key, data)); } /* * Perform a simple self-test to see if the VM is working */ static sha1_vm_test() { return sha1.hex_sha1("abc") == "a9993e364706816aba3e25717850c26c9cd0d89d"; } /* * Calculate the SHA-1 of an array of big-endian words, and a bit length */ static core_sha1(x, len) { /* append padding */ x[len >> 5] |= 0x80 << (24 - len % 32); x[((len + 64 >> 9) << 4) + 15] = len; var w = Array(80); var a = 1732584193; var b = -271733879; var c = -1732584194; var d = 271733878; var e = -1009589776; for (var i = 0; i < x.length; i += 16) { var olda = a; var oldb = b; var oldc = c; var oldd = d; var olde = e; for (var j = 0; j < 80; j++) { if (j < 16) w[j] = x[i + j]; else w[j] = sha1.rol(w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16], 1); var t = sha1.safe_add(sha1.safe_add(sha1.rol(a, 5), sha1.sha1_ft(j, b, c, d)), sha1.safe_add(sha1.safe_add(e, w[j]), sha1.sha1_kt(j))); e = d; d = c; c = sha1.rol(b, 30); b = a; a = t; } a = sha1.safe_add(a, olda); b = sha1.safe_add(b, oldb); c = sha1.safe_add(c, oldc); d = sha1.safe_add(d, oldd); e = sha1.safe_add(e, olde); } return Array(a, b, c, d, e); } /* * Perform the appropriate triplet combination function for the current * iteration */ static sha1_ft(t, b, c, d) { if (t < 20) return (b & c) | ((~b) & d); if (t < 40) return b ^ c ^ d; if (t < 60) return (b & c) | (b & d) | (c & d); return b ^ c ^ d; } /* * Determine the appropriate additive constant for the current iteration */ static sha1_kt(t) { return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : (t < 60) ? -1894007588 : -899497514; } /* * Calculate the HMAC-SHA1 of a key and some data */ static core_hmac_sha1(key, data) { var bkey = sha1.str2binb(key); if (bkey.length > 16) bkey = sha1.core_sha1(bkey, key.length * sha1.chrsz()); var ipad = Array(16), opad = Array(16); for (var i = 0; i < 16; i++) { ipad[i] = bkey[i] ^ 0x36363636; opad[i] = bkey[i] ^ 0x5C5C5C5C; } var hash = sha1.core_sha1(ipad.concat(sha1.str2binb(data)), 512 + data.length * sha1.chrsz()); return sha1.core_sha1(opad.concat(hash), 512 + 160); } /* * Add integers, wrapping at 2^32. This uses 16-bit operations internally * to work around bugs in some JS interpreters. */ static safe_add(x, y) { var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF); } /* * Bitwise rotate a 32-bit number to the left. */ static rol(num, cnt) { return (num << cnt) | (num >>> (32 - cnt)); } /* * Convert an 8-bit or 16-bit string to an array of big-endian words * In 8-bit function, characters >255 have their hi-byte silently ignored. */ static str2binb(str) { var bin = Array(); var mask = (1 << sha1.chrsz()) - 1; for (var i = 0; i < str.length * sha1.chrsz(); i += sha1.chrsz()) bin[i >> 5] |= (str.charCodeAt(i / sha1.chrsz()) & mask) << (24 - i % 32); return bin; } /* * Convert an array of big-endian words to a string */ static binb2str(bin) { var str = ""; var mask = (1 << sha1.chrsz()) - 1; for (var i = 0; i < bin.length * 32; i += sha1.chrsz()) str += String.fromCharCode((bin[i >> 5] >>> (24 - i % 32)) & mask); return str; } /* * Convert an array of big-endian words to a hex string. */ static binb2hex(binarray) { var hex_tab = sha1.hexcase() ? "0123456789ABCDEF" : "0123456789abcdef"; var str = ""; for (var i = 0; i < binarray.length * 4; i++) { str += hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8 + 4)) & 0xF) + hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8)) & 0xF); } return str; } /* * Convert an array of big-endian words to a base-64 string */ static binb2b64(binarray) { var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var str = ""; for (var i = 0; i < binarray.length * 4; i += 3) { var triplet = (((binarray[i >> 2] >> 8 * (3 - i % 4)) & 0xFF) << 16) | (((binarray[i + 1 >> 2] >> 8 * (3 - (i + 1) % 4)) & 0xFF) << 8) | ((binarray[i + 2 >> 2] >> 8 * (3 - (i + 2) % 4)) & 0xFF); for (var j = 0; j < 4; j++) { if (i * 8 + j * 6 > binarray.length * 32) str += sha1.b64pad(); else str += tab.charAt((triplet >> 6 * (3 - j)) & 0x3F); } } return str; }
static sort_url_params(params){ if(params){ if(params.indexOf("&")>0){ let v; let array = params.split("&") let array2 = array.sort() for(let item of array2){ if(v){ v=item }else{ v += item + "&" } } return v }else{ return params } }else{ return "000" } }
static sort_body_data(data){ if(data){ let v; for(let key in data){ if(v){ v=key+"="+data[key] }else{ v += key+"="+data[key] +"&" } } return this.sort_url_params(v) }else{ return "000" } }
static sign(params,data){ //return hex_sha1(sort_url_params(params)+"_"+sort_body_data(data)) return this.sort_body_data(params)+"_"+this.sort_body_data(data) } }