/**
题目:poj3208 Apocalypse Someday
链接:http://poj.org/problem?id=3208
题意:求第K(K <= 5*107)个有连续3个6的数。
思路:数位dp+二分。
dp[i][j]表示长度为i,前缀状态为j时含有的个数。
j=0表示含有前导0;
j=1表示前缀连续1个6
j=2表示前缀连续2个6
j=3表示前缀连续3个6
j=4表示前缀不是6; */ //#include<bits/stdc++.h>
#include<cstring>
#include<cstdio>
#include<iostream>
#include<map>
#include<algorithm>
#include<queue>
using namespace std;
#define P pair<int,int>
#define ms(x,y) memset(x,y,sizeof x)
#define LL long long
const int maxn = ;
const int mod = 1e9+;
const int maxnode = *+;
const int sigma_size = ;
const LL inf = 1e18;
int digit[];
LL dp[][];///0表示前导0,1表示前缀一个6,2表示前缀2个6,3表示前缀3个6,4表示前缀不是6;
int next_state(int state,int x)
{
if(state==) return ;
if(x==){
if(state==||state==) return state+;
else return ;
}else
{
return ;
}
}
LL dfs(int len,int state,int bounded)
{
if(len==){
return state==;
}
if(!bounded&&dp[len][state]!=-) return dp[len][state];
int d = bounded?digit[len]:;
LL ans = ;
for(int i = ; i <= d; i++){
if(state==){
if(i==) ans += dfs(len-,,bounded&&(i==d));
else ans += dfs(len-,i==?:,bounded&&(i==d));
}else
{
ans += dfs(len-,next_state(state,i),bounded&&(i==d));
}
}
if(!bounded){
dp[len][state] = ans;
}
return ans;
}
LL solve(LL n)
{
int len = ;
while(n){
digit[++len] = n%;
n /= ;
}
return dfs(len,,true);
}
int main()
{
int T;
ms(dp,-);
cin>>T;
while(T--)
{
int n;
scanf("%d",&n);
LL lo = , hi = inf, mi;
while(lo<hi){
mi = (lo+hi)/;
LL ans = solve(mi);
if(ans>=n){///找下界。
hi = mi;
}else
{
lo = mi+;
}
}
printf("%lld\n",hi);
}
return ;
} /* */