易错点:
- 必须熟练掌握当无法在该点继续流量时直接剪枝(d[x]=0)的操作.
- 无向图的最大流由于两边都可增广,应当全部设置为相同的容量.
- 特殊矩阵图的构造.
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
const int MAXN=1000010,MAXM=1000010;
struct Edge{
int from,to,w,nxt;
}e[MAXM*6];
int head[MAXN*6],edgeCnt=1;
void addEdge(int u,int v,int w){
e[++edgeCnt].from=u;
e[edgeCnt].to=v;
e[edgeCnt].w=w;
e[edgeCnt].nxt=head[u];
head[u]=edgeCnt;
}
int s,t;
int d[MAXN*6];
bool bfs(){
memset(d,0,sizeof(d));
queue<int> q;
d[s]=1;
q.push(s);
while(!q.empty()){
int nowV=q.front();q.pop();
for(int i=head[nowV];i;i=e[i].nxt){
int nowNode=e[i].to;
if(e[i].w&&(!d[nowNode])){
d[nowNode]=d[nowV]+1;
if(nowNode==t)return 1;
q.push(nowNode);
}
}
}
return 0;
}
int Dinic(int x,int flow){
if(x==t)return flow;
int rest=flow;
for(int i=head[x];i&&rest;i=e[i].nxt){
int nowV=e[i].to;
if(d[nowV]==d[x]+1&&e[i].w){
int k=Dinic(nowV,min(rest,e[i].w));
if(!k)d[nowV]=0;
e[i].w-=k,e[i^1].w+=k;
rest-=k;
}
}
return flow-rest;
}
int m;
int getHash(int i,int j){
return (i-1)*m+j;
}
const int INF=2e9;
int main(){
int n;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
for(int j=1;j<=m-1;j++){
int u,v,w;
scanf("%d",&w);
u=getHash(i,j),v=getHash(i,j+1);
addEdge(u,v,w);
addEdge(v,u,w);
}
}
for(int i=1;i<=n-1;i++){
for(int j=1;j<=m;j++){
int u,v,w;
scanf("%d",&w);
u=getHash(i,j),v=getHash(i+1,j);
addEdge(u,v,w);
addEdge(v,u,w);
}
}
for(int i=1;i<=n-1;i++){
for(int j=1;j<=m-1;j++){
int u,v,w;
scanf("%d",&w);
u=getHash(i,j),v=getHash(i+1,j+1);
addEdge(u,v,w);
addEdge(v,u,w);
}
}
s=1,t=getHash(n,m);
int ans=0;
while(bfs()){
ans+=Dinic(s,INF);
}
printf("%d\n",ans);
return 0;
}