示例 1:
输入: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
输出: 4
示例 2:
输入: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
输出: 4
限制:
1 ≤ k ≤ 二叉搜索树元素个数
1.利用二叉搜索树右子树大于根节点,左子树小于根节点,所以中序遍历的结果递增有序的特性
①递归式写法
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> v;
int kthLargest(TreeNode* root, int k) {//注意给的是二叉排序树
if(root->left != NULL)
kthLargest(root->left, k);
v.push_back(root->val);
if(root->right != NULL)
kthLargest(root->right, k);
if(k <= v.size())
return v[v.size() - k];
return 0;
}
};
速度慢,内存大
②方法调用,
2.逆中序遍历,结果递减有序
用cnt遍历次数,提前返回,并不保存序列
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int cnt, res;
int kthLargest(TreeNode* root, int k) {
cnt = k;
ergodic(root);
return res;
}
void ergodic(TreeNode* root){//逆中序,结果递减有序
if(root->right != NULL)
ergodic(root->right);
cnt--;//代替中序的赋值
if(cnt == 0) res = root->val;
if(root->left != NULL)
ergodic(root->left);
}
};
速度内存有一点优化