【算法】单源最短路——Dijkstra

对于固定起点的最短路算法,我们称之为单源最短路算法。单源最短路算法很多,最常见的就是dijkstra算法。

dijkstra主要用的是一种贪心的思想,就是说如果i...s...t...j是最短路,那么i和j之间的任意两点s,t之间也一定是最短路,非常好证,如果s,t之间不是最短路,那么必然存在最短路,那么i到j也不是最短路造成了矛盾。

而dijkstra就是运用这样的思想,把起点首先放进一个集合S中,其他的点在另一个集合中,每次取起点经过集合S中的点可达的最短路的点,加入到集合S中,并且根据新加入的店刷新一遍最短路。直到所有的点都在集合S中。

【算法】单源最短路——Dijkstra

如上图,假设以1为起点,dis[i]为起点到i点的最短距离,如果没法直达则为INF

第一次:S中只有1,那么1能直达的点有2,3,取路径最短的3加入S,并更新一遍dis,发现6可达,dis[6] = 20;

第二次:S中有1,3,可达的有2,6,取2,则4,5可达,dis[4] = 21,dis[5] = 10;

第三次:S中有1,2,3,可达的有4,5,6,取5,到4多了新路径且比原来近,更新dis[4] = 13;

第四次:S中有1,2,3,5,可达的有4,6,取4,到6多了新路径且比原来近,更新dis[6] = 15;

第五次:S中有1,2,3,4,5,可达的有6,只有6不在S中,取6,不更新,完成算法

要注意的是外围循环是除了起点外的点数,如果多一次,pos会无法赋值因为所有的点都遍历过了,造成变量没有初始化而程序崩溃。

代码如下:

  1. #include <cstdio>
  2. #include <algorithm>
  3. #include <cstring>
  4. using namespace std;
  5. const int maxn = 10;
  6. int map[maxn][maxn], dis[maxn];
  7. int n;                                                         //点数
  8. void init()
  9. {
  10. for (int i = 1; i <= n; i++)
  11. for (int j = 1; j <= n; j++)
  12. map[i][j] = 0x3f3f3f;
  13. memset(dis, 0, sizeof(dis));
  14. }
  15. void dijkstra(int v0)
  16. {
  17. for (int i = 1; i <= n; i++)
  18. dis[i] = map[v0][i];
  19. map[v0][v0] = 0;
  20. for (int i = 1; i < n; i++)                                //注意循环的次数,如果到n,最后一次所有的map[i][i]都是0,pos找不到值会崩溃,如果初始化为0则dis[i]最后全是0(dis[0] = 0)
  21. {
  22. int min_dis = 0x3f3f3f3f,pos;
  23. for (int j =1; j <= n; j++)
  24. {
  25. if (map[j][j] && dis[j] < min_dis)                 //遍历所有点找到距离v0最小的点,记录下距离,并将其加入已计算的集合,将其编号用pos记录下来
  26. min_dis = dis[pos = j];
  27. }
  28. map[pos][pos] = 0;                                     //用map[i][i]来表示某个点是否被访问过,节省空间
  29. for (int j = 1; j <= n; j++)
  30. {
  31. dis[j] = min(dis[j], dis[pos] + map[pos][j]);      //用新添加的点来更新一边dis
  32. }
  33. }
  34. }
  35. int main()
  36. {
  37. freopen("input.txt", "r", stdin);
  38. int m,u,v,w,target;
  39. scanf("%d%d", &n,&m);
  40. init();
  41. while (m--)
  42. {
  43. scanf("%d%d%d", &u, &v, &w);
  44. map[u][v] = map[v][u] = w;
  45. }
  46. scanf("%d", &target);
  47. dijkstra(target);
  48. for (int i = 1; i <= n; i++)
  49. {
  50. printf("%d : %d\n", i, dis[i]);
  51. }
  52. return 0;
  53. }

但要注意的是,dijkstra不能计算含有负权的图的最短路,因为一直加负数始终会比原来的小。

上一篇:css 实现中部区块自适应宽度


下一篇:Apache配置与应用技术