\(\verb|CF650C Table Compression|\)
给一个 \(n\times m\) 的非负整数矩阵 \(a\),让你求一个 \(n\times m\) 的非负整数矩阵 \(b\),满足以下条件
- 若 \(a_{i,j}<a_{i,k}\),则 \(b_{i,j}<b_{i,k}\)
- 若 \(a_{i,j}=a_{i,k}\),则 \(b_{i,j}=b_{i,k}\)
- 若 \(a_{i,j}<a_{k,j}\),则 \(b_{i,j}<b_{k,j}\)
- 若 \(a_{i,j}=a_{k,j}\),则 \(b_{i,j}=b_{k,j}\)
- \(b\) 中的最大值最小
\(n\times m\leq 10^6\)
建图+并查集
先考虑 \(a\) 中没有重复元素的情况
发现,我们只需要对于每行每列,按值域从小到大,相邻两位置连边,然后 \(b\) 每个位置的权值即为到最小数的距离,在图上遍历一遍即可
但是若 \(a\) 中有重复元素,直接建图就没有正确性了
\(trick\) :对于同一行同一列的重复元素,建立并查集,进行操作时只用对根节点进行操作
时间复杂度 \(O(nm\log nm)\)
代码
#include <bits/stdc++.h>
using namespace std;
#define get(x, y) ((x - 1) * m + y)
typedef pair <int, int> pii;
const int maxn = 1e6 + 10;
int n, m, tot, a[maxn], f[maxn], par[maxn];
struct node {
int x, y;
bool operator < (const node& o) const {
return a[get(x, y)] < a[get(o.x, o.y)];
}
} dat[maxn];
vector <int> g[maxn];
int find(int x) {
return par[x] == x ? x : par[x] = find(par[x]);
}
void unite(int x, int y) {
par[find(x)] = find(y);
}
int dfs(int u) {
if (~f[u]) return f[u]; f[u] = 0;
for (int v : g[u]) f[u] = max(f[u], dfs(v));
return ++f[u];
}
int main() {
scanf("%d %d", &n, &m), tot = n * m;
for (int i = 1; i <= tot; i++) {
scanf("%d", a + i), par[i] = i;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
dat[j] = node{i, j};
}
sort(dat + 1, dat + m + 1);
for (int j = 1; j < m; j++) {
int u = get(dat[j].x, dat[j].y);
int v = get(dat[j + 1].x, dat[j + 1].y);
if (a[u] == a[v]) unite(u, v);
}
}
for (int j = 1; j <= m; j++) {
for (int i = 1; i <= n; i++) {
dat[i] = node{i, j};
}
sort(dat + 1, dat + n + 1);
for (int i = 1; i < n; i++) {
int u = get(dat[i].x, dat[i].y);
int v = get(dat[i + 1].x, dat[i + 1].y);
if (a[u] == a[v]) unite(u, v);
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
dat[j] = node{i, j};
}
sort(dat + 1, dat + m + 1);
for (int j = 1; j < m; j++) {
int u = get(dat[j].x, dat[j].y);
int v = get(dat[j + 1].x, dat[j + 1].y);
if ((u = find(u)) != (v = find(v))) g[v].push_back(u);
}
}
for (int j = 1; j <= m; j++) {
for (int i = 1; i <= n; i++) {
dat[i] = node{i, j};
}
sort(dat + 1, dat + n + 1);
for (int i = 1; i < n; i++) {
int u = get(dat[i].x, dat[i].y);
int v = get(dat[i + 1].x, dat[i + 1].y);
if ((u = find(u)) != (v = find(v))) g[v].push_back(u);
}
}
memset(f, -1, sizeof f);
for (int i = 1; i <= tot; i++) {
if (find(i) == i) dfs(i);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
printf("%d ", f[find(get(i, j))]);
}
putchar(10);
}
return 0;
}
一种 \(shortest\) 的做法
对于每个元素,按值域从小到大考虑,通过已访问到的行列最大值更新答案
时间复杂度 \(O(nm\log nm)\)
代码
#include <bits/stdc++.h>
using namespace std;
#define get(x, y) ((x - 1) * m + y)
const int maxn = 1e6 + 10;
int n, m, tot, a[maxn], ans[maxn], par[maxn], val[2][maxn];
struct node {
int x, y;
bool operator < (const node& o) const {
return a[get(x, y)] < a[get(o.x, o.y)];
}
} dat[maxn];
int find(int x) {
return par[x] == x ? x : par[x] = find(par[x]);
}
int main() {
scanf("%d %d", &n, &m), tot = n * m;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
int pos = get(i, j);
scanf("%d", a + pos), dat[pos] = node{i, j}, par[pos] = pos;
}
}
sort(dat + 1, dat + tot + 1);
for (int i = 1; i <= tot; i++) {
int tx = dat[i].x, ty = dat[i].y, pos = get(tx, ty);
int px = find(val[0][tx]), py = find(val[1][ty]), p = find(pos);
ans[p] = max(ans[px] + (a[p] > a[px]), ans[py] + (a[p] > a[py]));
if (a[p] == a[px]) par[px] = p;
if (a[p] == a[py]) par[py] = p;
val[0][tx] = val[1][ty] = p;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
printf("%d ", ans[find(get(i, j))]);
}
putchar(10);
}
return 0;
}