Hadoop: MapReduce2的几个基本示例

1) WordCount

这个就不多说了,满大街都是,网上有几篇对WordCount的详细分析

http://www.sxt.cn/u/235/blog/5809

http://www.cnblogs.com/zhanghuijunjava/archive/2013/04/27/3036549.html

这二篇都写得不错, 特别几张图画得很清晰

2) 去重处理(Distinct)

类似于db中的select distinct(x) from table , 去重处理甚至比WordCount还要简单,假如我们要对以下文件的内容做去重处理(注:该文件也是后面几个示例的输入参数)

2
8
8
3
2
3
5
3
0
2
7

基本上啥也不用做,在map阶段,把每一行的值当成key分发下去,然后在reduce阶段回收上来就可以了.

注:里面用到了一个自己写的类HDFSUtil,可以在 hadoop: hdfs API示例 一文中找到.

原理:map阶段完成后,在reduce开始之前,会有一个combine的过程,相同的key值会自动合并,所以自然而然的就去掉了重复.

 package yjmyzz.mr;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; import yjmyzz.util.HDFSUtil; import java.io.IOException; public class RemoveDup { public static class RemoveDupMapper
extends Mapper<Object, Text, Text, NullWritable> { public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
context.write(value, NullWritable.get());
//System.out.println("map: key=" + key + ",value=" + value);
} } public static class RemoveDupReducer extends Reducer<Text, NullWritable, Text, NullWritable> {
public void reduce(Text key, Iterable<NullWritable> values, Context context)
throws IOException, InterruptedException {
context.write(key, NullWritable.get());
//System.out.println("reduce: key=" + key);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: RemoveDup <in> [<in>...] <out>");
System.exit(2);
} //删除输出目录(可选,省得多次运行时,总是报OUTPUT目录已存在)
HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]); Job job = Job.getInstance(conf, "RemoveDup");
job.setJarByClass(RemoveDup.class);
job.setMapperClass(RemoveDupMapper.class);
job.setCombinerClass(RemoveDupReducer.class);
job.setReducerClass(RemoveDupReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class); for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

输出:

0
2
3
5
7
8

3) 记录计数(Count)

这个跟WordCount略有不同,类似于Select Count(*) from tables的效果,代码也超级简单,直接拿WordCount改一改就行了

 package yjmyzz.mr;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import yjmyzz.util.HDFSUtil; import java.io.IOException;
import java.util.StringTokenizer; public class RowCount { public static class RowCountMapper
extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1);
private final static Text countKey = new Text("count"); public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
context.write(countKey, one);
}
} public static class RowCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: RowCount <in> [<in>...] <out>");
System.exit(2);
}
//删除输出目录(可选)
HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]); Job job = Job.getInstance(conf, "word count");
job.setJarByClass(RowCount.class);
job.setMapperClass(RowCountMapper.class);
job.setCombinerClass(RowCountReducer.class);
job.setReducerClass(RowCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

输出: count 11

注:如果只想输出一个数字,不需要"count"这个key,可以改进一下:

 package yjmyzz.mr;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import yjmyzz.util.HDFSUtil; import java.io.IOException; public class RowCount2 { public static class RowCount2Mapper
extends Mapper<LongWritable, Text, LongWritable, NullWritable> { public long count = 0; public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
count += 1;
} protected void cleanup(Context context) throws IOException, InterruptedException {
context.write(new LongWritable(count), NullWritable.get());
} } public static class RowCount2Reducer extends Reducer<LongWritable, NullWritable, LongWritable, NullWritable> { public long count = 0; public void reduce(LongWritable key, Iterable<NullWritable> values, Context context)
throws IOException, InterruptedException {
count += key.get();
} protected void cleanup(Context context) throws IOException, InterruptedException {
context.write(new LongWritable(count), NullWritable.get());
} } public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: FindMax <in> [<in>...] <out>");
System.exit(2);
} //删除输出目录(可选,省得多次运行时,总是报OUTPUT目录已存在)
HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]); Job job = Job.getInstance(conf, "RowCount2");
job.setJarByClass(RowCount2.class);
job.setMapperClass(RowCount2Mapper.class);
job.setCombinerClass(RowCount2Reducer.class);
job.setReducerClass(RowCount2Reducer.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(NullWritable.class); for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

这样输出结果就只有一个数字11了.

注意: 这里context.write(xxx)只能写在cleanup方法中, 该方法在Mapper和Reducer接口中都有, 在map方法及reduce方法执行完后,会触发cleanup方法. 大家可以尝试下,把context.write(xxx)写在map和reduce方法中试试看,结果会出现多行记录,而不是预期的仅1个数字.

4)求最大值(Max)

 package yjmyzz.mr;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import yjmyzz.util.HDFSUtil; import java.io.IOException; public class Max { public static class MaxMapper
extends Mapper<LongWritable, Text, LongWritable, NullWritable> { public long max = Long.MIN_VALUE; public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
max = Math.max(Long.parseLong(value.toString()), max);
} protected void cleanup(Mapper.Context context) throws IOException, InterruptedException {
context.write(new LongWritable(max), NullWritable.get());
} } public static class MaxReducer extends Reducer<LongWritable, NullWritable, LongWritable, NullWritable> { public long max = Long.MIN_VALUE; public void reduce(LongWritable key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { max = Math.max(max, key.get()); } protected void cleanup(Reducer.Context context) throws IOException, InterruptedException {
context.write(new LongWritable(max), NullWritable.get());
} } public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: Max <in> [<in>...] <out>");
System.exit(2);
} //删除输出目录(可选,省得多次运行时,总是报OUTPUT目录已存在)
HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]); Job job = Job.getInstance(conf, "Max");
job.setJarByClass(Max.class);
job.setMapperClass(MaxMapper.class);
job.setCombinerClass(MaxReducer.class);
job.setReducerClass(MaxReducer.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(NullWritable.class); for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

输出结果:8

如果看懂了刚才的Count2版本的代码,这个自然不用多解释.

5)求和(Sum)

 package yjmyzz.mr;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import yjmyzz.util.HDFSUtil; import java.io.IOException; public class Sum { public static class SumMapper
extends Mapper<LongWritable, Text, LongWritable, NullWritable> { public long sum = 0; public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
sum += Long.parseLong(value.toString());
} protected void cleanup(Context context) throws IOException, InterruptedException {
context.write(new LongWritable(sum), NullWritable.get());
} } public static class SumReducer extends Reducer<LongWritable, NullWritable, LongWritable, NullWritable> { public long sum = 0; public void reduce(LongWritable key, Iterable<NullWritable> values, Context context)
throws IOException, InterruptedException {
sum += key.get();
} protected void cleanup(Context context) throws IOException, InterruptedException {
context.write(new LongWritable(sum), NullWritable.get());
} } public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: Sum <in> [<in>...] <out>");
System.exit(2);
} //删除输出目录(可选,省得多次运行时,总是报OUTPUT目录已存在)
HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]); Job job = Job.getInstance(conf, "Sum");
job.setJarByClass(Sum.class);
job.setMapperClass(SumMapper.class);
job.setCombinerClass(SumReducer.class);
job.setReducerClass(SumReducer.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(NullWritable.class); for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

输出结果:43

Sum与刚才的Max原理如出一辙,不多解释了,依旧利用了cleanup方法

6)求平均值(Avg)

 package yjmyzz.mr;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import yjmyzz.util.HDFSUtil; import java.io.IOException; public class Average { public static class AvgMapper
extends Mapper<LongWritable, Text, LongWritable, LongWritable> { public long sum = 0;
public long count = 0; public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
sum += Long.parseLong(value.toString());
count += 1;
} protected void cleanup(Context context) throws IOException, InterruptedException {
context.write(new LongWritable(sum), new LongWritable(count));
} } public static class AvgCombiner extends Reducer<LongWritable, LongWritable, LongWritable, LongWritable> { public long sum = 0;
public long count = 0; public void reduce(LongWritable key, Iterable<LongWritable> values, Context context)
throws IOException, InterruptedException {
sum += key.get();
for (LongWritable v : values) {
count += v.get();
}
} protected void cleanup(Context context) throws IOException, InterruptedException {
context.write(new LongWritable(sum), new LongWritable(count));
} } public static class AvgReducer extends Reducer<LongWritable, LongWritable, DoubleWritable, NullWritable> { public long sum = 0;
public long count = 0; public void reduce(LongWritable key, Iterable<LongWritable> values, Context context)
throws IOException, InterruptedException {
sum += key.get();
for (LongWritable v : values) {
count += v.get();
}
} protected void cleanup(Context context) throws IOException, InterruptedException {
context.write(new DoubleWritable(new Double(sum)/count), NullWritable.get());
} } public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: Avg <in> [<in>...] <out>");
System.exit(2);
} //删除输出目录(可选,省得多次运行时,总是报OUTPUT目录已存在)
HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]); Job job = Job.getInstance(conf, "Avg");
job.setJarByClass(Average.class);
job.setMapperClass(AvgMapper.class);
job.setCombinerClass(AvgCombiner.class);
job.setReducerClass(AvgReducer.class); //注意这里:由于Mapper与Reducer的输出Key,Value类型不同,所以要单独为Mapper设置类型
job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(LongWritable.class); job.setOutputKeyClass(DoubleWritable.class);
job.setOutputValueClass(NullWritable.class); for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

输出:3.909090909090909

这个稍微要复杂一点,平均值大家都知道=Sum/Count,所以这其实前面Count与Max的综合运用而已,思路是在输出的key-value中,用max做key,用count做value,最终形成{sum,count}的输出,然后在最后的cleanup中,sum/count即得avg,但是有一个特点要注意的地方,由于Mapper与Reducer的output {key,value}类型并不一致,所以96-101行这里,分别设置了Map及Reduce的key,value输出类型,如果没有96-97这二行,100-101这二行会默认把Mapper,Combiner,Reducer这三者的输出类型设置成相同的类型.

7) 改进型的WordCount(按词频倒排)

官网示例WordCount只统计出单词出现的次数,并未按词频做倒排,下面的代码示例实现了该功能

 package yjmyzz.mr;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import yjmyzz.util.HDFSUtil; import java.io.IOException;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.TreeMap; public class WordCount2 { public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { //定义treeMap来保持统计结果,由于treeMap是按key升序排列的,这里要人为指定Comparator以实现倒排
private TreeMap<Integer, String> treeMap = new TreeMap<Integer, String>(new Comparator<Integer>() {
@Override
public int compare(Integer x, Integer y) {
return y.compareTo(x);
}
}); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//reduce后的结果放入treeMap,而不是向context中记入结果
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
if (treeMap.containsKey(sum)){
String value = treeMap.get(sum) + "," + key.toString();
treeMap.put(sum,value);
}
else {
treeMap.put(sum, key.toString());
}
} protected void cleanup(Context context) throws IOException, InterruptedException {
//将treeMap中的结果,按value-key顺序写入contex中
for (Integer key : treeMap.keySet()) {
context.write(new Text(treeMap.get(key)), new IntWritable(key));
}
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount2 <in> [<in>...] <out>");
System.exit(2);
}
//删除输出目录
HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]);
Job job = Job.getInstance(conf, "word count2");
job.setJarByClass(WordCount2.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

原理: 依然用到了cleanup,此外为了实现排序,采用了TreeMap这种内置了key排序的数据结构.

这里为了展示更直观,选用了电影<超能陆战队>主题曲的第一段歌词做为输入:

They say we are what we are
But we do not have to be
I am bad behavior but I do it in the best way
I will be the watcher
Of the eternal flame
I will be the guard dog
of all your fever dreams

原版的WordCount处理完后,结果如下:

But	1
I 4
Of 1
They 1
all 1
am 1
are 2
bad 1
be 3
behavior 1
best 1
but 1
do 2
dog 1
dreams 1
eternal 1
fever 1
flame 1
guard 1
have 1
in 1
it 1
not 1
of 1
say 1
the 4
to 1
watcher 1
way 1
we 3
what 1
will 2
your 1

改进后的WordCount2处理结果如下:

I,the	4
be,we 3
are,do,will 2
But,Of,They,all,am,bad,behavior,best,but,dog,dreams,eternal,fever,flame,guard,have,in,it,not,of,say,to,watcher,way,what,your 1
上一篇:factory工厂模式之工厂方法FactoryMethod


下一篇:基于visual Studio2013解决算法导论之027hash表