OpenCV实现图像搜索引擎(Image Search Engine)

一.原理
1. 图像搜索原理
图像搜索算法基本可以分为如下步骤:

提取图像特征。如采用SIFT、指纹算法函数、哈希函数、bundling features算法等。当然如知乎中所言,也可以针对特定的图像集群采用特定的模式设计算法,从而提高匹配的精度。如已知所有图像的中间部分在颜色空间或构图上有显著的区别,就可以加强对中间部分的分析,从而更加高效地提取图像特征。

图像特征的存储。一般将图像特征量化为数据存放于索引表中,并存储在外部存储介质中,搜索图片时仅搜索索引表中的图像特征,按匹配程度从高到低查找类似图像。对于图像尺寸分辩率不同的情况可以采用降低采样或归一化方法。

相似度匹配。如存储的是特征向量,则比较特征向量之间的加权后的平方距离。如存储的是散列码,则比较Hamming距离。初筛后,还可以进一步筛选最佳图像集。

2. 图片搜索引擎算法及框架设计
基本步骤
采用颜色空间特征提取器和构图空间特征提取器提取图像特征。
图像索引表构建驱动程序生成待搜索图像库的图像特征索引表。
图像搜索引擎驱动程序执行搜索命令,生成原图图像特征并传入图片搜索匹配器。
图片搜索匹配内核执行搜索匹配任务。返回前limit个最佳匹配图像。

color_descriptor.py

# -*- coding: utf-8 -*-
# @Time    : 2021/10/9 9:44
# @Author  : 
import cv2
import numpy
"""
颜色空间特征提取器ColorDescriptor
类成员bins。记录HSV色彩空间生成的色相、饱和度及明度分布直方图的最佳bins分配。bins分配过多则可能导致程序效率低下,匹配难度和匹配要求过分苛严;bins分配过少则会导致匹配精度不足,不能表证图像特征。
成员函数describe(self, image)。将图像从BGR色彩空间转为HSV色彩空间(此处应注意OpenCV读入图像的色彩空间为BGR而非RGB)。生成左上、右上、左下、右下、中心部分的掩模。中心部分掩模的形状为椭圆形。这样能够有效区分中心部分和边缘部分,从而在getHistogram()方法中对不同部位的色彩特征做加权处理。

"""

class ColorDescriptor:
    __slot__ = ["bins"]

    def __init__(self, bins):
        self.bins = bins

    def getHistogram(self, image, mask, isCenter):
        """
        :param image:
        :param mask:
        :param isCenter:
        :return:
        """
        # get histogram
        imageHistogram = cv2.calcHist([image], [0, 1, 2], mask, self.bins, [0, 180, 0, 256, 0, 256])
        # normalize
        imageHistogram = cv2.normalize(imageHistogram, imageHistogram).flatten()
        if isCenter:
            weight = 5.0
            for index in range(len(imageHistogram)):
                imageHistogram[index] *= weight
        return imageHistogram

    def describe(self, image):
        image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        features = []
        # get dimension and center
        height, width = image.shape[0], image.shape[1]
        centerX, centerY = int(width * 0.5), int(height * 0.5)
        # initialize mask dimension
        segments = [(0, centerX, 0, centerY), (0, centerX, centerY, height), (centerX, width, 0, centerY),
                    (centerX, width, centerY, height)]
        # initialize center part
        axesX, axesY = int(width * 0.75) / 2, int(height * 0.75) / 2
        ellipseMask = numpy.zeros([height, width], dtype="uint8")
        # img, center, axes, angle, startAngle, endAngle, color, thickness=None, lineType=None, shift=None
        cv2.ellipse(ellipseMask, (centerX, centerY), (int(axesX), int(axesY)), 0, 0, 360, 255, -1)
        # initialize corner part
        for startX, endX, startY, endY in segments:
            cornerMask = numpy.zeros([height, width], dtype="uint8")
            cv2.rectangle(cornerMask, (startX, startY), (endX, endY), 255, -1)
            cornerMask = cv2.subtract(cornerMask, ellipseMask)
            # get histogram of corner part
            imageHistogram = self.getHistogram(image, cornerMask, False)
            features.append(imageHistogram)
        # get histogram of center part
        imageHistogram = self.getHistogram(image, ellipseMask, True)
        features.append(imageHistogram)
        # return
        return features

index.py

# -*- coding: utf-8 -*-
# @Time    : 2021/10/9 9:45
# @Author  : 
import color_descriptor
import structure_descriptor
import glob
import argparse
import cv2

"""
图像索引表构建驱动index.py。
引入color_descriptor和structure_descriptor。用于解析图片库图像,获得色彩空间特征向量和构图空间特征向量。

用argparse设置命令行参数。参数包括图片库路径、色彩空间特征索引表路径、构图空间特征索引表路径。
用glob获得图片库路径。
生成索引表文本并写入csv文件。

可采用如下命令行形式启动驱动程序:
python index.py --dataset dataset --colorindex color_index.csv --structure structure_index.csv
"""
searchArgParser = argparse.ArgumentParser()
searchArgParser.add_argument("-d", "--dataset", required=True,
                             help="Path to the directory that contains the images to be indexed")
searchArgParser.add_argument("-c", "--colorindex", required=True,
                             help="Path to where the computed color index will be stored")
searchArgParser.add_argument("-s", "--structureindex", required=True,
                             help="Path to where the computed structure index will be stored")
arguments = vars(searchArgParser.parse_args())

idealBins = (8, 12, 3)
colorDesriptor = color_descriptor.ColorDescriptor(idealBins)

output = open(arguments["colorindex"], "w")

for imagePath in glob.glob(arguments["dataset"] + "/*.jpg"):
    imageName = imagePath[imagePath.rfind("/") + 1:]
    image = cv2.imread(imagePath)
    features = colorDesriptor.describe(image)
    # write features to file
    features = [str(feature).replace("\n", "") for feature in features]
    output.write("%s,%s\n" % (imageName, ",".join(features)))
# close index file
output.close()

idealDimension = (16, 16)
structureDescriptor = structure_descriptor.StructureDescriptor(idealDimension)

output = open(arguments["structureindex"], "w")

for imagePath in glob.glob("dataset" + "/*.jpg"):
    imageName = imagePath[imagePath.rfind("/") + 1:]
    image = cv2.imread(imagePath)
    structures = structureDescriptor.describe(image)
    # write structures to file
    structures = [str(structure).replace("\n", "") for structure in structures]
    output.write("%s,%s\n" % (imageName, ",".join(structures)))
# close index file
output.close()

searchEngine.py

# -*- coding: utf-8 -*-
# @Time    : 2021/10/9 9:45
# @Author  : 
import color_descriptor
import structure_descriptor
import searcher
import argparse
import cv2
"""
图像搜索引擎驱动searchEngine.py。

引入color_descriptor和structure_descriptor。用于解析待匹配(搜索)的图像,获得色彩空间特征向量和构图空间特征向量。

用argparse设置命令行参数。参数包括图片库路径、色彩空间特征索引表路径、构图空间特征索引表路径、待搜索图片路径。
生成索引表文本并写入csv文件。

可采用如下命令行形式启动驱动程序:
python searchEngine.py -c color_index.csv -s structure_index.csv -r dataset -q query/pyramid.jpg 

dataset为图片库路径。color_index.csv为色彩空间特征索引表路径。structure_index.csv为构图空间特征索引表路径,query/pyramid.jpg为待搜索图片路径。
"""

searchArgParser = argparse.ArgumentParser()
searchArgParser.add_argument("-c", "--colorindex", required = True, help = "Path to where the computed color index will be stored")
searchArgParser.add_argument("-s", "--structureindex", required = True, help = "Path to where the computed structure index will be stored")
searchArgParser.add_argument("-q", "--query", required = True, help = "Path to the query image")
searchArgParser.add_argument("-r", "--resultpath", required = True, help = "Path to the result path")
searchArguments = vars(searchArgParser.parse_args())

idealBins = (8, 12, 3)
idealDimension = (16, 16)

colorDescriptor = color_descriptor.ColorDescriptor(idealBins)
structureDescriptor = structure_descriptor.StructureDescriptor(idealDimension)
queryImage = cv2.imread(searchArguments["query"])
colorIndexPath = searchArguments["colorindex"]
structureIndexPath = searchArguments["structureindex"]
resultPath = searchArguments["resultpath"]

queryFeatures = colorDescriptor.describe(queryImage)
queryStructures = structureDescriptor.describe(queryImage)

imageSearcher = searcher.Searcher(colorIndexPath, structureIndexPath)
searchResults = imageSearcher.search(queryFeatures, queryStructures)
print(searchResults)
for imageName, score in searchResults:
    queryResult = cv2.imread( imageName)
    cv2.imshow("Result Score: " + str(int(score)) + " (lower is better)", queryResult)
cv2.imshow("Query", queryImage)
cv2.waitKey(0)

searcher.py

# -*- coding: utf-8 -*-
# @Time    : 2021/10/9 9:45
# @Author  : 
import numpy
import csv
import re

"""
图片搜索匹配内核Searcher。

类成员colorIndexPath和structureIndexPath。记录色彩空间特征索引表路径和结构特征索引表路径。
成员函数solveColorDistance(self, features, queryFeatures, eps = 1e-5)。求features和queryFeatures特征向量的二范数。eps是为了避免除零错误。
成员函数solveStructureDistance(self, structures, queryStructures, eps = 1e-5)。同样是求特征向量的二范数。eps是为了避免除零错误。需作统一化处理,color和structure特征向量距离相对比例适中,不可过分偏颇。
成员函数searchByColor(self, queryFeatures)。使用csv模块的reader方法读入索引表数据。采用re的split方法解析数据格式。用字典searchResults存储query图像与库中图像的距离,键为图库内图像名imageName,值为距离distance。
成员函数transformRawQuery(self, rawQueryStructures)。将未处理的query图像矩阵转为用于匹配的特征向量形式。
成员函数searchByStructure(self, rawQueryStructures)。类似4。
成员函数search(self, queryFeatures, rawQueryStructures, limit = 3)。将searchByColor方法和searchByStructure的结果汇总,获得总匹配分值,分值越低代表综合距离越小,匹配程度越高。返回前limit个最佳匹配图像。

"""


class Searcher:
    __slot__ = ["colorIndexPath", "structureIndexPath"]

    def __init__(self, colorIndexPath, structureIndexPath):
        self.colorIndexPath, self.structureIndexPath = colorIndexPath, structureIndexPath

    def solveColorDistance(self, features, queryFeatures, eps=1e-5):
        distance = 0.5 * numpy.sum([((a - b) ** 2) / (a + b + eps) for a, b in zip(features, queryFeatures)])
        return distance

    def solveStructureDistance(self, structures, queryStructures, eps=1e-5):
        distance = 0
        normalizeRatio = 5e3
        for index in range(len(queryStructures)):
            for subIndex in range(len(queryStructures[index])):
                a = structures[index][subIndex]
                b = queryStructures[index][subIndex]
                distance += (a - b) ** 2 / (a + b + eps)
        return distance / normalizeRatio

    def searchByColor(self, queryFeatures):
        searchResults = {}
        with open(self.colorIndexPath) as indexFile:
            reader = csv.reader(indexFile)
            for line in reader:
                features = []
                for feature in line[1:]:
                    feature = feature.replace("[", "").replace("]", "")
                    findStartPosition = 0
                    feature = re.split("\s+", feature)
                    rmlist = []
                    for index, strValue in enumerate(feature):
                        if strValue == "":
                            rmlist.append(index)
                    for _ in range(len(rmlist)):
                        currentIndex = rmlist[-1]
                        rmlist.pop()
                        del feature[currentIndex]
                    feature = [float(eachValue) for eachValue in feature]
                    features.append(feature)
                distance = self.solveColorDistance(features, queryFeatures)
                searchResults[line[0]] = distance
            indexFile.close()
        # print "feature", sorted(searchResults.iteritems(), key = lambda item: item[1], reverse = False)
        return searchResults

    def transformRawQuery(self, rawQueryStructures):
        queryStructures = []
        for substructure in rawQueryStructures:
            structure = []
            for line in substructure:
                for tripleColor in line:
                    structure.append(float(tripleColor))
            queryStructures.append(structure)
        return queryStructures

    def searchByStructure(self, rawQueryStructures):
        searchResults = {}
        queryStructures = self.transformRawQuery(rawQueryStructures)
        with open(self.structureIndexPath) as indexFile:
            reader = csv.reader(indexFile)
            for line in reader:
                structures = []
                for structure in line[1:]:
                    structure = structure.replace("[", "").replace("]", "")
                    structure = re.split("\s+", structure)
                    if structure[0] == "":
                        structure = structure[1:]
                    structure = [float(eachValue) for eachValue in structure]
                    structures.append(structure)
                distance = self.solveStructureDistance(structures, queryStructures)
                searchResults[line[0]] = distance
            indexFile.close()
        # print "structure", sorted(searchResults.iteritems(), key = lambda item: item[1], reverse = False)
        return searchResults

    def search(self, queryFeatures, rawQueryStructures, limit=3):
        featureResults = self.searchByColor(queryFeatures)
        structureResults = self.searchByStructure(rawQueryStructures)
        results = {}
        for key, value in featureResults.items():
            results[key] = value + structureResults[key]
        results = sorted(results.items(), key=lambda item: item[1], reverse=False)
        return results[: limit]

structure_descriptor.py

# -*- coding: utf-8 -*-
# @Time    : 2021/10/9 9:45
# @Author  : 
import cv2
"""
构图空间特征提取器StructureDescriptor。

类成员dimension。将所有图片归一化(降低采样)为dimension所规定的尺寸。由此才能够用于统一的匹配和构图空间特征的生成。
成员函数describe(self, image)。将图像从BGR色彩空间转为HSV色彩空间(此处应注意OpenCV读入图像的色彩空间为BGR而非RGB)。返回HSV色彩空间的矩阵,等待在搜索引擎核心中的下一步处理。

"""


class StructureDescriptor:
    __slot__ = ["dimension"]

    def __init__(self, dimension):
        self.dimension = dimension

    def describe(self, image):
        image = cv2.resize(image, self.dimension, interpolation=cv2.INTER_CUBIC)
        # image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        return image

二.执行
# 构建索引
python index.py --dataset dataset --colorindex color_index.csv --structure structure_index.csv

# 搜图
python searchEngine.py -c color_index.csv -s structure_index.csv -r dataset -q query/pyramid.jpg 

OpenCV实现图像搜索引擎(Image Search Engine)
OpenCV实现图像搜索引擎(Image Search Engine)

参考:https://blog.csdn.net/coderhuhy/article/details/46575667

上一篇:路由参数 - 传递params参数、传递 search 参数、传递 state 参数


下一篇:顺序查找